ANALYSIS OF A DELAY PREY-PREDATOR MODEL WITH DISEASE IN THE PREY SPECIES ONLY

- Journal title : Journal of the Korean Mathematical Society
- Volume 46, Issue 4, 2009, pp.713-731
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2009.46.4.713

Title & Authors

ANALYSIS OF A DELAY PREY-PREDATOR MODEL WITH DISEASE IN THE PREY SPECIES ONLY

Zhou, Xueyong; Shi, Xiangyun; Song, Xinyu;

Zhou, Xueyong; Shi, Xiangyun; Song, Xinyu;

Abstract

In this paper, a three-dimensional eco-epidemiological model with delay is considered. The stability of the two equilibria, the existence of Hopf bifurcation and the permanence are investigated. It is found that Hopf bifurcation occurs when the delay passes though a sequence of critical values. The estimation of the length of delay to preserve stability has also been calculated. Numerical simulation with a hypothetical set of data has been done to support the analytical findings.

Keywords

predator-prey model;eco-epidemiology;delay;Hopf bifurcation;

Language

English

Cited by

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

References

1.

M. A. Aziz-Alaoui, Study of a Leslie-Gower-type tritrophic population model, Chaos Solitons Fractals 14 (2002), no. 8, 1275–1293

2.

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predatorprey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett. 16 (2003), no. 7, 1069–1075

3.

E. Beretta and Y. Takeuchi, Convergence results in SIR epidemic models with varying population sizes, Nonlinear Anal. 28 (1997), no. 12, 1909–1921

4.

G. Butler, H. I. Freedman, and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc. 96 (1986), no. 3, 425–430

5.

J. Chattopadhyay and N. Bairagi, Pelicans at risk in Salton Sea-an eco-epidemiological model, Ecolog. Modell. 136 (2001), 103–112

6.

J. Chattopadhyay, P. D. N. Srinivasu, and N. Bairagi, Pelican at risk in Salton Sea-an ecoepidemiological model-II, Ecolog. Modell. 167 (2003) 199–211

7.

K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations, Funkcial. Ekvac. 29 (1986), no. 1, 77–90

8.

H. I. Freedman and P. Moson, Persistence definitions and their connections, Proc. Amer. Math. Soc. 109 (1990), no. 4, 1025–1033

9.

H. Freedman and V. S. H. Rao, The trade-off between mutual interference and time lags in predator-prey systems, Bull. Math. Biol. 45 (1983), no. 6, 991–1004

10.

H. I. Freedman and P.Waltman, Persistence in a model of three competitive populations, Math. Biosci. 73 (1985), no. 1, 89–101

11.

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal. 20 (1989), no. 2, 388–395

13.

H. W. Hethcote, W. Wang, L. Han, and Z. Ma, A predator-prey model with infected prey, Theor. Pop. Biol. 66 (2004), 259–268

14.

S. B. Hsu and T. W. Hwang, Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type, Taiwanese J. Math. 3 (1999), no. 1, 35–53

15.

S. B. Hsu, T. W. Hwang, and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol. 42 (2001), no. 6, 489–506

16.

T. W. Hwang, Uniqueness of the limit cycle for Gause-type predator-prey systems, J. Math. Anal. Appl. 238 (1999), no. 1, 179–195

17.

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol. 36 (1998), no. 4, 389–406

18.

W. M. Liu, H. W. Hethcote, and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol. 25 (1987), no. 4, 359–380

19.

W. Ma, M. Song, and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett. 17 (2004), no. 10, 1141–1145

20.

A. F. Nindjin, M. A. Aziz-Alaoui, and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal. Real World Appl. 7 (2006), no. 5, 1104–1118

21.

M. Song, W. Ma, and Yasuhiro Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate, J. Comput. Appl. Math. 201 (2007), no. 2, 389–394

22.

X. Y. Song and Y. F. Li, Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect, Nonlinear Anal. Real World Appl. 9 (2008), no. 1, 64–79

23.

Y. L. Song, M. A. Han, and J. J. Wei, Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Phys. D 200 (2005), no. 3-4, 185–204

24.

H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton, NJ, 2003

25.

W. Wang and Z. Ma, Global dynamics of an epidemic model with time delay, Nonlinear Anal. Real World Appl. 3 (2002), no. 3, 365–373