JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE γ-TH HYPER-KLOOSTERMAN SUMS AND A PROBLEM OF D. H. LEHMER
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE γ-TH HYPER-KLOOSTERMAN SUMS AND A PROBLEM OF D. H. LEHMER
Tianping, Zhang; Xifeng, Xue;
  PDF(new window)
 Abstract
For any integer k 2, let P(c, k + 1;q) be the number of all k+1-tuples with positive integer coordinates () such that , ()
 Keywords
r-th hyper-Kloosterman sums;hybrid mean value;
 Language
English
 Cited by
1.
Modular hyperbolas, Japanese Journal of Mathematics, 2012, 7, 2, 235  crossref(new windwow)
 References
1.
D. Bump, W. Duke, J. Hoffstein, and H. Iwaniec, An estimate for the Hecke eigenvalues of Maass forms, Internat. Math. Res. Notices (1992), no. 4, 75–81 crossref(new window)

2.
D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), no. 2, 243–250 crossref(new window)

3.
R. K. Guy, Unsolved Problems in Number Theory, Second edition. Problem Books in Mathematics. Unsolved Problems in Intuitive Mathematics, I. Springer-Verlag, New York, 1994

4.
N. V. Kuznetsov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums, Mat. Sb. (N.S.) 111(153) (1980), no. 3, 334–383, 479

5.
J. V. Linnik, Additive problems and eigenvalues of the modular operators, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) pp. 270–284 Inst. Mittag-Leffler, Djursholm, 1963

6.
H. Liu, On a problem of D. H. Lehmer and hyper-Kloosterman sums, Adv. Math. (China) 36 (2007), no. 2, 245–252

7.
W. Luo, Z. Rudnick, and P. Sarnak, On Selberg's eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), no. 2, 387–401 crossref(new window)

8.
L. J. Mordell, On a special polynomial congruence and exponential sum, Calcutta Math. Soc. Golden Jubilee Commemoration Vol. pp. 29–32 Calcutta Math. Soc., Calcutta, 1963

9.
C. Pan and C. Pan, Goldbach Conjecture, Science Press, Beijing, 1992

10.
S. J. Patterson, The asymptotic distribution of exponential sums. I, Experiment. Math. 12 (2003), no. 2, 135–153 crossref(new window)

11.
A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII pp. 1–15 Amer. Math. Soc., Providence, R.I., 1965

12.
R. A. Smith, On n-dimensional Kloosterman sums, J. Number Theory 11 (1979), no. 3 S. Chowla Anniversary Issue, 324–343 crossref(new window)

13.
F. Takeo, On Kronecker's limit formula for Dirichlet series with periodic coefficients, Acta Arith. 55 (1990), no. 1, 59–73

14.
Y. Ye, Estimation of exponential sums of polynomials of higher degrees. II, Acta Arith. 93 (2000), no. 3, 221–235

15.
T. Zhang and W. Zhang, On the r-th hyper-Kloosterman sums and its hybrid mean value, J. Korean Math. Soc. 43 (2006), no. 6, 1199–1217 crossref(new window)

16.
W. Zhang, A problem of D. H. Lehmer and its generalization. II, Compositio Math. 91 (1994), no. 1, 47–56

17.
W. Zhang, On the difference between an integer and its inverse modulo n, J. Number Theory 52 (1995), no. 1, 1–6 crossref(new window)

18.
W. Zhang, On a Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 267 (2002), no. 1, 89–96 crossref(new window)

19.
W. Zhang, On the difference between an integer and its inverse modulo n. II, Sci. China Ser. A 46 (2003), no. 2, 229–238 crossref(new window)

20.
W. Zhang, On a problem of D. H. Lehmer and Kloosterman sums, Monatsh. Math. 139 (2003), no. 3, 247–257 crossref(new window)

21.
W. Zhang, A problem of D. H. Lehmer and its mean square value formula, Japan. J. Math. (N.S.) 29 (2003), no. 1, 109–116

22.
W. Zhang, Y. Yi, and X. He, On the 2k-th power mean of Dirichlet L-functions with the wei ght of general Kloosterman sums, J. Number Theory 84 (2000), no. 2, 199–213 crossref(new window)