JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEAK METRIC AND WEAK COMETRIC SCHEMES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEAK METRIC AND WEAK COMETRIC SCHEMES
Kim, Dae-San; Kim, Gil-Chun;
  PDF(new window)
 Abstract
The notion of weak metric and weak cometric schemes are introduced as a generalization of metric and cometric schemes. They are given as the wreath product of a finite number of symmetric association schemes satisfying certain equivalent conditions which are analogous to the ones for metric or cometric schemes. We characterize those schemes and determine some of their parameters.
 Keywords
weak metric scheme;weak cometric scheme;
 Language
English
 Cited by
 References
1.
S. Bang and S. Y. Song, On generalized semidirect product of association schemes, Discrete Math. 303 (2005), no. 1-3, 5–16 crossref(new window)

2.
E. Bannai and T. Ito, Algebraic combinatorics. I, Association schemes. The Ben-jamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984

3.
A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18. Springer-Verlag, Berlin, 1989

4.
R. A. Brualdi, J. Graves, and K. M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1995), no. 1-3, 57–72 crossref(new window)

5.
D. S. Kim, MacWilliams-type identities for fragment and sphere enumerators, European J. Combin. 28 (2007), no. 1, 273–302 crossref(new window)

6.
D. S. Kim, Dual MacWilliams pair, IEEE Trans. Inform. Theory 51 (2005), no. 8, 2901–2905 crossref(new window)

7.
H. K. Kim and D. Y. Oh, A classification of posets admitting the MacWilliams identity, IEEE Trans. Inform. Theory 51 (2005), no. 4, 1424–1431 crossref(new window)

8.
H. K. Kim and D. Y. Oh, Association schemes for poset metrics and MacWilliams duality, to submit

9.
S. Y. Song, Fusion relation in products of association schemes, Graphs Combin. 18 (2002), no. 3, 655–665 crossref(new window)