JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE STRONG LAW OF LARGE NUMBERS FOR WEIGHTED SUMS OF ARRAYS OF ROWWISE NEGATIVELY DEPENDENT RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE STRONG LAW OF LARGE NUMBERS FOR WEIGHTED SUMS OF ARRAYS OF ROWWISE NEGATIVELY DEPENDENT RANDOM VARIABLES
Baek, Jong-Il; Seo, Hye-Young; Lee, Gil-Hwan; Choi, Jeong-Yeol;
  PDF(new window)
 Abstract
Let { | } be an array of rowwise negatively dependent (ND) random variables. We in this paper discuss the conditions of ${\sum}^n_{t
 Keywords
complete convergence;Negatively dependent random variables;arrays;uniformly bounded random variable;strong convergence;weak convergence;
 Language
English
 Cited by
1.
On the complete convergence for arrays of rowwise ψ-mixing random variables, Journal of Inequalities and Applications, 2013, 2013, 1, 393  crossref(new windwow)
2.
An inequality of widely dependent random variables and its applications*, Lithuanian Mathematical Journal, 2016, 56, 1, 16  crossref(new windwow)
3.
The Strong Law of Large Numbers for Extended Negatively Dependent Random Variables, Journal of Applied Probability, 2010, 47, 04, 908  crossref(new windwow)
 References
1.
A. Bozorgnia, R. F. Patterson, and R. L. Taylor, Limit theorems for dependent random variables, World Congress of Nonlinear Analysts '92, Vol. I–IV (Tampa, FL, 1992), 1639–1650, de Gruyter, Berlin, 1996

2.
N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Comm. Statist. A-Theory Methods 10 (1981), no. 4, 307–337 crossref(new window)

3.
P. Erdos, On a theorem of Hsu and Robbins, Ann. Math. Statistics 20 (1949), 286–291 crossref(new window)

4.
P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25–31 crossref(new window)

5.
T. C. Hu, F. Moricz, and R. L. Taylor, Strong laws of large numbers for arrays of rowwise independent random variables, Acta Math. Hungar. 54 (1989), no. 1-2, 153–162 crossref(new window)

6.
T. C. Hu, F. Moricz, and R. L. Taylor, Strong laws of large numbers for arrays of rowwise independent random variables, Statistics Technical Report 27 (1986), University of Georgia crossref(new window)

7.
R. L. Taylor and T. C. Hu, Sub-Gaussian techniques in proving strong laws of large numbers, Amer. Math. Monthly 94 (1987), no. 3, 295–299 crossref(new window)

8.
R. L. Taylor, R. F. Patterson, and A. Bozorgnia, A strong law of large numbers for arrays of rowwise negatively dependent random variables, Stochastic Anal. Appl. 20 (2002), no. 3, 643–656 crossref(new window)