JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL OF 2-BRIDGE LINKS AND APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL OF 2-BRIDGE LINKS AND APPLICATIONS
Lee, Eun-Ju; Lee, Sang-Youl; Seo, Myoung-Soo;
  PDF(new window)
 Abstract
In this paper, we give a recursive formula for the Jones polynomial of a 2-bridge knot or link with Conway normal form C(, , , ..., ) in terms of , , ..., . As applications, we also give a recursive formula for the Jones polynomial of a 3-periodic link with rational quotient L
 Keywords
Jones polynomial;2-bridge knot;span;periodic link with rational quotient;
 Language
English
 Cited by
 References
1.
J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, 1970 Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) pp. 329. 358 Pergamon, Oxford

2.
H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, On the character variety of periodic knots and links, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 3, 477.490 crossref(new window)

3.
H. J. Jang, S. Y. Lee, and M. Seo, Casson knot invariants of periodic knots with rational quotients, J. Knot Theory Ramifications 16 (2007), no. 4, 439.460 crossref(new window)

4.
V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103.111 crossref(new window)

5.
T. Kanenobu, Examples on polynomial invariants of knots and links. II, Osaka J. Math. 26 (1989), no. 3, 465.482

6.
T. Kanenobu, Jones and Q polynomials for 2-bridge knots and links, Proc. Amer. Math. Soc. 110 (1990), no. 3, 835.841

7.
T. Kanenobu and Y. Miyazawa, 2-bridge link projections, Kobe J. Math. 9 (1992), no. 2, 171.182

8.
L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395.407 crossref(new window)

9.
S. Y. Lee, M.-S. Park, and M. Seo, The Seifert matrices of periodic links with rational quotients, Kyungpook Math. J. 47 (2007), no. 2, 295.309

10.
S. Y. Lee and M. Seo, Recurrence formulas for the Alexander polynomials of 2-bridge links and their covering links, J. Knot Theory Ramifications 15 (2006), no. 2, 179.203 crossref(new window)

11.
S. Y. Lee and M. Seo, Casson knot invariants of periodic knot with rational quotients II, J. Knot Theory Ramifications 17 (2008), no. 8, 905.923 crossref(new window)

12.
S. Y. Lee and M. Seo, The genus of periodic links with rational quotients, to appear in Bull. Austral. Math. Soc. (2009) crossref(new window)

13.
W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), no. 1, 107.141

14.
B. Lu and J. K. Zhong, The Kauffman Polynomials of 2-bridge Knots, arXiv:math. GT/0606114

15.
K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187.194 crossref(new window)

16.
K. Murasugi, Jones polynomials of periodic links, Pacific J. Math. 131 (1988), no. 2, 319.329 crossref(new window)

17.
K. Murasugi, Knot Theory and its Applications, Translated from the 1993 Japanese original by Bohdan Kurpita. Birkhauser Boston, Inc., Boston, MA, 1996

18.
S. Nakabo, Formulas on the HOMFLY and Jones polynomials of 2-bridge knots and links, Kobe J. Math. 17 (2000), no. 2, 131.144

19.
S. Nakabo, Explicit description of the HOMFLY polynomials for 2-bridge knots and links, J. Knot Theory Ramifications 11 (2002), no. 4, 565.574 crossref(new window)

20.
D. Rolfsen, Knots and Links, Mathematics Lecture Series, No. 7. Publish or Perish, Inc., Berkeley, Calif., 1976

21.
H. Schubert, Knoten mit zwei Br$\ddot{u}$cken, Math Z. 65 (1956), 133.170 crossref(new window)

22.
A. Stoimenow, Rational knots and a theorem of Kanenobu, Experiment. Math. 9 (2000), no. 3, 473.478 crossref(new window)

23.
M. B. Thistlethwaite, Kauffman's polynomial and alternating links, Topology 27 (1988), no. 3, 311.318 crossref(new window)