JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN UPPER BOUND ON THE NUMBER OF PARITY CHECKS FOR BURST ERROR DETECTION AND CORRECTION IN EUCLIDEAN CODES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AN UPPER BOUND ON THE NUMBER OF PARITY CHECKS FOR BURST ERROR DETECTION AND CORRECTION IN EUCLIDEAN CODES
Jain, Sapna; Lee, Ki-Suk;
  PDF(new window)
 Abstract
There are three standard weight functions on a linear code viz. Hamming weight, Lee weight, and Euclidean weight. Euclidean weight function is useful in connection with the lattice constructions [2] where the minimum norm of vectors in the lattice is related to the minimum Euclidean weight of the code. In this paper, we obtain an upper bound over the number of parity check digits for Euclidean weight codes detecting and correcting burst errors.
 Keywords
Euclidean weight;linear codes;minimum distance;burst errors;
 Language
English
 Cited by
1.
Singleton's Bound in Euclidean Codes, Algebra Colloquium, 2010, 17, spec01, 741  crossref(new windwow)
 References
1.
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London 1968

2.
A. Bonnecaze, P. Sole, and A. R. Calderbank, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory 41 (1995), no. 2, 366.377 crossref(new window)

3.
C. N. Campopiano, Bounds on Burst Error Correcting Codes, IRE. Trans. IT-8 (1962), 257.259 crossref(new window)

4.
W. Cary Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003

5.
P. Fire, A Class of Multiple-Error-Correcting Binary Codes for Non-Independent Errors, Sylvania Reports RSL-E-2, Sylvania Reconnaissance Systems, Mountain View, California, 1959

6.
S. Jain, Error detecting and error correcting capabilities of Euclidean codes, Pragmatic algebra, 51.66, SAS Int. Publ., Delhi, 2006

7.
S. Jain, Modification to a bound for random error correction with Lee weight, Commun. Korean Math. Soc. 20 (2005), no. 2, 405.409 crossref(new window)

8.
S. Jain, On a sufficient condition to attain minimum square distance in Euclidean codes, to appear in Algebra Colloquium

9.
S. Jain and S. H. Choi, Plotkin's bound in codes equipped with Euclidean weight function, to appear in Tamsui Oxford Journal of Mathematics

10.
S. Jain and K.-B. Nam, Lower bounds for codes correcting moderate-density bursts of fixed length with Lee weight consideration, Linear Algebra Appl. 418 (2006), no. 1, 122.129 crossref(new window)

11.
S. Jain, K.-B. Nam, and K.-S. Lee, On some perfect codes with respect to Lee metric, Linear Algebra Appl. 405 (2005), 104.120 crossref(new window)

12.
S. Jain and K. P. Shum, Sufficient condition over the number of parity checks for burst error detection/correction in linear Lee weight codes, Algebra Colloq. 14 (2007), no. 2, 341.350 crossref(new window)

13.
C. Y. Lee, Some properties of non-binary error correcting codes, IEEE Trans. Information Theory IT-4 (1958), 77.82 crossref(new window)

14.
W. W. Peterson and E. J.Weldon, Jr., Error Correcting Codes, 2nd Edition, MIT Press, Cambridge, Massachusetts, 1972

15.
A. D. Wyner, Low-density-burst-correcting Codes, IEEE. Trans. Information Theory IT-9 (1963), 124