JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DERIVATIONS OF PRIME AND SEMIPRIME RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DERIVATIONS OF PRIME AND SEMIPRIME RINGS
Argac, Nurcan; Inceboz, Hulya G.;
  PDF(new window)
 Abstract
Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If (d(x)y+xd(y)+d(y)x+
 Keywords
prime and semiprime rings;left Utumi quotient rings;differential identities;derivations;
 Language
English
 Cited by
1.
GENERALIZED DERIVATIONS ON SEMIPRIME RINGS,;;

대한수학회보, 2011. vol.48. 6, pp.1253-1259 crossref(new window)
2.
DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS,;;;

대한수학회보, 2013. vol.50. 5, pp.1651-1657 crossref(new window)
3.
A Note on Skew-commuting Automorphisms in Prime Rings,;;

Kyungpook mathematical journal, 2015. vol.55. 1, pp.21-28 crossref(new window)
1.
Some Results on Generalizedα,β-Derivations in∗-Prime Rings, International Journal of Mathematics and Mathematical Sciences, 2015, 2015, 1  crossref(new windwow)
2.
A Note on Skew-commuting Automorphisms in Prime Rings, Kyungpook mathematical journal, 2015, 55, 1, 21  crossref(new windwow)
3.
Generalized Derivations of Rings and Banach Algebras, Communications in Algebra, 2013, 41, 3, 1188  crossref(new windwow)
4.
Semiprime rings with nilpotent Lie ring of inner derivations, Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, 2014, 13, 1  crossref(new windwow)
5.
Power Values of Derivations on Multilinear Polynomials in Prime Rings, Acta Mathematica Vietnamica, 2016, 41, 1, 121  crossref(new windwow)
6.
DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS, Bulletin of the Korean Mathematical Society, 2013, 50, 5, 1651  crossref(new windwow)
7.
GENERALIZED DERIVATIONS ON SEMIPRIME RINGS, Bulletin of the Korean Mathematical Society, 2011, 48, 6, 1253  crossref(new windwow)
8.
On commutativity of rings with generalized derivations, Journal of the Egyptian Mathematical Society, 2016, 24, 2, 151  crossref(new windwow)
 References
1.
M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), no. 1-2, 3.8 crossref(new window)

2.
K. I. Beidar, W. S. Martindale, and V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996

3.
C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723.728 crossref(new window)

4.
C. L. Chuang, Hypercentral derivations, J. Algebra 166 (1994), no. 1, 39.71. crossref(new window)

5.
J. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49.63 crossref(new window)

6.
C. Faith, Lecture on Injective Modules and Quotient Rings, Lecture Notes in Mathematics, No. 49 Springer-Verlag, Berlin-New York, 1967

7.
Y. Hirano, A. Kaya, and H. Tominaga, On a theorem of Mayne, Math. J. Okayama Univ. 25 (1983), no. 2, 125.132

8.
N. Jacobson, PI-Algebras: An Introduction, Lecture Notes in Mathematics, Vol. 441. Springer-Verlag, Berlin-New York, 1975

9.
V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220.238, 242.243

10.
J. Lambek, Lecture on Rings and Modules, With an appendix by Ian G. Connell Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London 1966

11.
C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 731.734 crossref(new window)

12.
T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27.38

13.
W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576.584 crossref(new window)