JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REPRESENTATIONS OF THE MOORE-PENROSE INVERSE OF 2×2 BLOCK OPERATOR VALUED MATRICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REPRESENTATIONS OF THE MOORE-PENROSE INVERSE OF 2×2 BLOCK OPERATOR VALUED MATRICES
Deng, Chun Yuan; Du, Hong Ke;
  PDF(new window)
 Abstract
We obtain necessary and sufficient conditions for block operator valued matrices to be Moore-Penrose (MP) invertible and give new representations of such MP inverses in terms of the individual blocks.
 Keywords
block operator valued matrix;Moore-Penrose inverse;inverse matrix;
 Language
English
 Cited by
1.
Hypo-EP operators, Indian Journal of Pure and Applied Mathematics, 2016, 47, 1, 73  crossref(new windwow)
 References
1.
J. K. Baksalary and G. P. H. Styan, Generalized inverses of partitioned matrices in Banachiewicz-Schur form, Linear Algebra Appl. 354 (2002), no. 1-3, 41-47. crossref(new window)

2.
R. H. Bouldin, Generalized inverses and factorizations, Recent applications of generalized inverses, pp. 233-249, Res. Notes in Math., 66, Pitman, Boston, Mass.-London, 1982.

3.
R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. crossref(new window)

4.
M. R. Hestenes, Relative hermitian matrices, Pacific J. Math. 11 (1961), 225-245. crossref(new window)

5.
J. Ji, Explicit expressions of the generalized inverses and condensed Cramer rules, Linear Algebra Appl. 404 (2005), 183-192. crossref(new window)

6.
M. Khadivi, Range inclusion and operator equations, J. Math. Anal. Appl. 197 (1996), no. 2, 630-633. crossref(new window)

7.
T.-T. Lu and S.-H. Shiou, Inverses of 2 × 2 block matrices, Comput. Math. Appl. 43 (2002), no. 1-2, 119-129. crossref(new window)

8.
P. Phohomsiri and B. Han, An alternative proof for the recursive formulae for computing the Moore-Penrose M-inverse of a matrix, Appl. Math. Comput. 174 (2006), no. 1, 81-97. crossref(new window)

9.
Y. Tian, The Moore-Penrose inverses of m $\times$ n block matrices and their applications, Linear Algebra Appl. 283 (1998), no. 1-3, 35-60. crossref(new window)

10.
G. Wang and B. Zheng, The weighted generalized inverses of a partitioned matrix, Appl. Math. Comput. 155 (2004), no. 1, 221-233. crossref(new window)

11.
Y. Wei, The representation and approximation for the weighted Moore-Penrose inverse in Hilbert space, Appl. Math. Comput. 136 (2003), no. 2-3, 475-486. crossref(new window)

12.
Y. Wei, A characterization and representation of the generalized inverse $A_{T}^{(2)},_S$ and its applications, Linear Algebra Appl. 280 (1998), no. 2-3, 87-96. crossref(new window)

13.
Y. Wei, J. Cai, and M. K. Ng, Computing Moore-Penrose inverses of Toeplitz matrices by Newton's iteration, Math. Comput. Modelling 40 (2004), no. 1-2, 181-191. crossref(new window)

14.
Y.Wei and J. Ding, Representations for Moore-Penrose inverses in Hilbert spaces, Appl. Math. Lett. 14 (2001), no. 5, 599-604. crossref(new window)

15.
Y. Wei and D. S. Djordjevi, On integral representation of the generalized inverse $A_{T}^{(2)},_S$, Appl. Math. Comput. 142 (2003), no. 1, 189-194. crossref(new window)

16.
Y. Wei and N. Zhang, A note on the representation and approximation of the outer inverse $A_{T}^{(2)},_S$ of a matrix A, Appl. Math. Comput. 147 (2004), no. 3, 837-841. crossref(new window)

17.
J. Zhow and G. Wang, Block idempotent matrices and generalized Schur complement, Appl. Math. Comput. 188 (2007), no. 1, 246-256. crossref(new window)