JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITE GROUPS WHICH HAVE MANY NORMAL SUBGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITE GROUPS WHICH HAVE MANY NORMAL SUBGROUPS
Zhang, Qinhai; Guo, Xiaoqiang; Qu, Haipeng; Xu, Mingyao;
  PDF(new window)
 Abstract
In this paper we classify finite groups whose nonnormal subgroups are of order p or pq, where p, q are primes. As a by-product, we also classify the finite groups in which all nonnormal subgroups are cyclic.
 Keywords
finite p-groups;inner abelian p-groups;Dedekind groups;central product;
 Language
English
 Cited by
1.
FINITE NON-NILPOTENT GENERALIZATIONS OF HAMILTONIAN GROUPS,;;;

대한수학회보, 2011. vol.48. 6, pp.1147-1155 crossref(new window)
2.
NOMALIZERS OF NONNORMAL SUBGROUPS OF FINITE p-GROUPS,;;

대한수학회지, 2012. vol.49. 1, pp.201-221 crossref(new window)
1.
Finite p-groups whose nonnormal subgroups have orders at most p 3, Frontiers of Mathematics in China, 2014, 9, 5, 1169  crossref(new windwow)
2.
Generalised norms in finite soluble groups, Journal of Algebra, 2014, 402, 392  crossref(new windwow)
3.
Groups with Certain Normality Conditions, Communications in Algebra, 2016, 44, 8, 3308  crossref(new windwow)
4.
NOMALIZERS OF NONNORMAL SUBGROUPS OF FINITE p-GROUPS, Journal of the Korean Mathematical Society, 2012, 49, 1, 201  crossref(new windwow)
5.
FINITE NON-NILPOTENT GENERALIZATIONS OF HAMILTONIAN GROUPS, Bulletin of the Korean Mathematical Society, 2011, 48, 6, 1147  crossref(new windwow)
6.
Finite 2-groups whose nonnormal subgroups have orders at most 23, Frontiers of Mathematics in China, 2012, 7, 5, 971  crossref(new windwow)
7.
On finite p-groups with few normal subgroups, Journal of Algebra and Its Applications, 2016, 1750159  crossref(new windwow)
8.
Finite groups in which the normal closures of non-normal subgroups have the same order, Journal of Algebra and Its Applications, 2016, 15, 07, 1650125  crossref(new windwow)
9.
The number of conjugacy classes of nonnormal subgroups of finite p-groups, Journal of Algebra, 2016, 466, 44  crossref(new windwow)
 References
1.
Y. Berkovich, On subgroups of finite p-groups, J. Algebra 224 (2000), no. 2, 198-240. crossref(new window)

2.
R. Dedekind, Uber Gruppen, deren samtliche Teiler Normalteiler sind, Math. Ann. 48 (1897), 548-561. crossref(new window)

3.
D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups. Number 6. Part IV, The special odd case. Mathematical Surveys and Monographs, 40.6. American Mathematical Society, Providence, RI, 2005.

4.
B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.

5.
H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, Springer, 2004.

6.
D. S. Passman, Nonnormal subgroups of p-groups, J. Algebra 15 (1970), 352-370. crossref(new window)

7.
L. R´edei, Das schiefe Product in der Gruppentheorie, Comment. Math. Helvet. 20 (1947), 225-267. crossref(new window)

8.
M. Xu, H. Qu, and Q. Zhang, Finite p-groups all of whose subgroups of index $p^2$ are metacyclic, submitted.

9.
Q. Zhang and J. Cao, Finite groups whose nontrivial normal subgroups have the same order, J. Math. Res. Exposition 28 (2008), no. 4, 807-812.