JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON PRÜFER SEMISTAR MULTIPLICATION DOMAINS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON PRÜFER SEMISTAR MULTIPLICATION DOMAINS
Picozza, Giampaolo;
  PDF(new window)
 Abstract
In this note we give a new generalization of the notions of domain and PvMD which uses quasi semistar invertibility, the "quasi PMD", and compare them with the PMD. We show in particular that the problem of when a quasi PMD is a PMD is strictly related to the problem of the descent to subrings of the PMD property and we give necessary and sufficient conditions.
 Keywords
semistar operation;star operation;
 Language
English
 Cited by
1.
THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS,;;

대한수학회보, 2015. vol.52. 4, pp.1327-1338 crossref(new window)
1.
On some classes of integral domains defined by Krullʼs a.b. operations, Journal of Algebra, 2011, 341, 1, 179  crossref(new windwow)
2.
THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS, Bulletin of the Korean Mathematical Society, 2015, 52, 4, 1327  crossref(new windwow)
 References
1.
J. T. Arnold and J. W. Brewer, Kronecker function rings and flat D[X]-modules, Proc. Amer. Math. Soc. 27 (1971), 483-485. crossref(new window)

2.
S. El Baghdadi, M. Fontana, and G. Picozza, Semistar Dedekind domains, J. Pure Appl. Algebra 193 (2004), no. 1-3, 27-60. crossref(new window)

3.
S. El Baghdadi and M. Fontana, Semistar linkedness and flatness, Prufer semistar multiplication domains, Comm. Algebra 32 (2004), no. 3, 1101-1126. crossref(new window)

4.
M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, Non-Noetherian commutative ring theory, 169-197, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.

5.
M. Fontana, P. Jara, and E. Santos, Prufer $\ast$-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), no. 1, 21-50. crossref(new window)

6.
M. Fontana and K. A. Loper, Nagata rings, Kronecker function rings, and related semistar operations, Comm. Algebra 31 (2003), no. 10, 4775-4805. crossref(new window)

7.
M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12 (2005), no. 4, 645-664. crossref(new window)

8.
R. Gilmer, An embedding theorem for HCF-rings, Proc. Cambridge Philos. Soc. 68 (1970), 583-587. crossref(new window)

9.
R. Gilmer, Multiplicative Ideal Theory, Corrected reprint of the 1972 edition. Queen's Papers in Pure and Applied Mathematics, 90. Queen's University, Kingston, ON, 1992.

10.
M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722. crossref(new window)

11.
J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137-147. crossref(new window)

12.
E. G. Houston, S. B. Malik, and J. L. Mott, Characterizations of *-multiplication domains, Canad. Math. Bull. 27 (1984), no. 1, 48-52. crossref(new window)

13.
B. G. Kang, Prufer v-multiplication domains and the ring R[X]Nv , J. Algebra 123 (1989), no. 1, 151-170. crossref(new window)

14.
A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1-21.

15.
G. Picozza, Star operations on overrings and semistar operations, Comm. Algebra 33 (2005), no. 6, 2051-2073. crossref(new window)

16.
G. Picozza, A note on semistar Noetherian domains, Houston J. Math. 33 (2007), no. 2, 415-432.

17.
G. Picozza and F. Tartarone, When the semistar operation $\tilde{\star} $ is the identity, Comm. Algebra 36 (2008), no. 5, 1954-1975. crossref(new window)

18.
J. Querre, Id´eaux divisoriels d'un anneau de polynomes, J. Algebra 64 (1980), no. 1, 270-284. crossref(new window)

19.
F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. crossref(new window)

20.
M. Zafrullah, Some polynomial characterizations of Prufer v-multiplication domains, J. Pure Appl. Algebra 32 (1984), no. 2, 231-237. crossref(new window)