JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON ENERGY ESTIMATES FOR A LANDAU-LIFSCHITZ TYPE FUNCTIONAL IN HIGHER DIMENSIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON ENERGY ESTIMATES FOR A LANDAU-LIFSCHITZ TYPE FUNCTIONAL IN HIGHER DIMENSIONS
Qi, Longxing; Lei, Yutian;
  PDF(new window)
 Abstract
The authors study the asymptotic behavior of radial minimizers of an energy functional associated with ferromagnets and antiferromagnets in higher dimensions. The location of the zeros of the radial minimizer is discussed. Moreover, several uniform estimates for the radial minimizer are presented. Based on these estimates, the authors establish global convergence of radial minimizers.
 Keywords
radial minimizer;energy functional of Landau-Lifschitz type;planar ferromagnets and antiferromagnets;higher dimensions;location of zeros;
 Language
English
 Cited by
 References
1.
F. Bethuel, H. Brezis, and F. Helein, Ginzburg-Landau Vortices, Birkhauser, Berlin, 1994.

2.
M. Comte and P. Mironescu, The behavior of a Ginzburg-Landau minimizer near its zeroes, Calc. Var. Partial Differential Equations 4 (1996), no. 4, 323-340. crossref(new window)

3.
F. B. Hang and F. H. Lin, Static theory for planar ferromagnets and antiferromagnets, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 4, 541-580. crossref(new window)

4.
Y. T. Lei, Asymptotic behavior of the regularized minimizer of an energy functional in higher dimensions, J. Math. Anal. Appl. 334 (2007), no. 2, 1341-1362. crossref(new window)

5.
Y. T. Lei, Some results on an n-Ginzburg-Landau-type minimizer, J. Comput. Appl. Math. 217 (2008), no. 1, 123-136. crossref(new window)

6.
P. Mironescu, Une estimation pour les minimiseurs de lenergie de Ginzburg-Landau, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 9, 941-943.

7.
N. Papanicolaou and P. N. Spathis, Semitopological solitons in planar ferromagnets, Nonlinearity 12 (1999), no. 2, 285-302. crossref(new window)

8.
M. Struwe, Une estimation asymptotique pour le modele de Ginzburg-Landau, C. R. Acad. Sci. Paris Ser. I Math. 317 (1993), no. 7, 677-680.