JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII
Park, Jeong-Hyeong; Sekigawa, Kouei;
  PDF(new window)
 Abstract
We show that the Riemannian geometry of a tangent sphere bundle of a Riemannian manifold (M, g) of constant radius reduces essentially to the one of unit tangent sphere bundle of a Riemannian manifold equipped with the respective induced Sasaki metrics. Further, we provide some applications of this theorem on the -Einstein tangent sphere bundles and certain related topics to the tangent sphere bundles.
 Keywords
tangent sphere bundle;contact metric structure;Sasaki metric;-Einstein manifold;
 Language
English
 Cited by
1.
A REMARK ON H-CONTACT UNIT TANGENT SPHERE BUNDLES,;;;;

대한수학회지, 2011. vol.48. 2, pp.329-340 crossref(new window)
2.
Tangent sphere bundles of variable radii,;;;

Advanced Studies in Contemporary Mathematics, 2013. vol.23. 3, pp.531-544
1.
Spectral geometry of eta-Einstein Sasakian manifolds, Journal of Geometry and Physics, 2012, 62, 11, 2140  crossref(new windwow)
2.
Tangent sphere bundles with constant trace of the Jacobi operator, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2012, 53, 2, 551  crossref(new windwow)
3.
A REMARK ON H-CONTACT UNIT TANGENT SPHERE BUNDLES, Journal of the Korean Mathematical Society, 2011, 48, 2, 329  crossref(new windwow)
 References
1.
M. T. K. Abbassi and O. Kowalski, On g-natural metrics with constant scalar curvature on unit tangent sphere bundles, Topics in almost Hermitian geometry and related fields, 1-29, World Sci. Publ., Hackensack, NJ, 2005. crossref(new window)

2.
E. Boeckx, When are the tangent sphere bundles of a Riemannian manifold reducible?, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2885-2903. crossref(new window)

3.
E. Boeckx and L. Vanhecke, Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51(126) (2001), no. 3, 523-544. crossref(new window)

4.
Y. D. Chai, S. H. Chun, J. H. Park, and K. Sekigawa, Remarks on -Einstein unit tangent bundles, Monatsh. Math. 155 (2008), no. 1, 31-42. crossref(new window)

5.
J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413-443.

6.
J. T. Cho and J.-I. Inoguchi, Pseudo-symmetric contact 3-manifolds. II. When is the tangent sphere bundle over a surface pseudo-symmetric?, Note Mat. 27 (2007), no. 1, 119-129.

7.
S. H. Chun, J. H. Park, and K. Sekigawa, Remarks on -Einstein tangent sphere bundles of radius r, preprint.

8.
O. Kowalski and M. Sekizawa, On tangent sphere bundles with small or large constant radius, Special issue in memory of Alfred Gray (1939-1998). Ann. Global Anal. Geom. 18 (2000), no. 3-4, 207-219. crossref(new window)

9.
O. Kowalski and M. Sekizawa, On the scalar curvature of tangent sphere bundles with arbitrary constant radius, Bull. Greek Math. Soc. 44 (2000), 17-30.

10.
E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. (4) 150 (1988), 1-19. crossref(new window)

11.
M. Sekizawa, Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14 (1991), no. 2, 407-417. crossref(new window)