JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERATING RELATIONS INVOLVING 3-VARIABLE 2-PARAMETER TRICOMI FUNCTIONS USING LIE-ALGEBRAIC TECHNIQUES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERATING RELATIONS INVOLVING 3-VARIABLE 2-PARAMETER TRICOMI FUNCTIONS USING LIE-ALGEBRAIC TECHNIQUES
Khan, Subuhi; Khan, Mumtaz Ahmad; Khan, Rehana;
  PDF(new window)
 Abstract
This paper is an attempt to stress the usefulness of the multivariable special functions. In this paper, we derive generating relations involving 3-variable 2-parameter Tricomi functions by using Lie-algebraic techniques. Further we derive certain new and known generating relations involving other forms of Tricomi and Bessel functions as applications.
 Keywords
generalized Tricomi functions;Lie-algebra representation;generating relations;
 Language
English
 Cited by
1.
Generating relations of multi-variable Tricomi functions of two indices using Lie algebra representation, Arab Journal of Mathematical Sciences, 2014, 20, 1, 101  crossref(new windwow)
 References
1.
L. C. Andrews, Special Functions for Engineers and Applied Mathematician, Macmillan Company, New York, 1985.

2.
G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, Advanced special functions and applications, (Melfi, 1999), 147-164, Proc. Melfi Sch. Adv. Top. Math. Phys. 1, Aracne, Rome 2000.

3.
G. Dattoli, M. Migliorati, and H. M. Srivastava, Some families of generating functions for the Bessel and related functions, Georgian Math. J. 11 (2004), no. 2, 219-228.

4.
G. Dattoli and A. Torre, Theory and Applications of Generalized Bessel Functions, ARACNE, Rome, Italy, 1996.

5.
G. Dattoli, A. Torre, S. Lorenzutta, G. Maino, and C. Chiccoli, Theory of generalized Bessel functions. II, Nuovo Cimento B (11) 106 (1991), no. 1, 21-51. crossref(new window)

6.
S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.

7.
S. Khan, Harmonic oscillator group and Laguerre 2D polynomials, Rep. Math. Phys. 52 (2003), 227-233. crossref(new window)

8.
S. Khan and M. A. Pathan, Lie theoretic generating relations of Hermite 2D polynomials, J. Comput. Appl. Math. 160(2003), no. 1-2, 139-146. crossref(new window)

9.
S. Khan, G. Yasmeen, and A. Mittal, Representation of Lie algebra $T_3$ and 2-variable 2-parameter Bessel functions, J. Math. Anal. Appl. 326 (2007), no. 1, 500-510. crossref(new window)

10.
W. Jr. Miller, Lie Theory and Special Functions, Academic Press, New York and London, 1968.

11.
E. D. Rainville, Special Functions, Macmillan, Reprinted by Chelsea Publ. Co., Bronx, New York, 1971.

12.
H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Limited, Chichester, 1984.

13.
N. Ja. Vilenkin, Special Functions and the Theory of Group Representations, Amer. Math. Soc. Trans. Providence, Rhode Island, 1968.

14.
A. Wawrzynczyk, Group Representation and Special Functions, PWN-Polish Scientific Publ., Warszawa, 1984.

15.
L. Weisner, Group-theoretic origin of certain generating functions, Pacific J. Math. 5 (1955), 1033-1039. crossref(new window)

16.
L. Weisner, Generating functions for Hermite functions, Canad. J. Math. 11 (1959), 141-147. crossref(new window)

17.
L. Weisner, Generating functions for Bessel functions, Canad. J. Math. 11 (1959), 148-155. crossref(new window)