JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FANO MANIFOLDS AND BLOW-UPS OF LOW-DIMENSIONAL SUBVARIETIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FANO MANIFOLDS AND BLOW-UPS OF LOW-DIMENSIONAL SUBVARIETIES
Chierici, Elena; Occhetta, Gianluca;
  PDF(new window)
 Abstract
We study Fano manifolds of pseudoindex greater than one and dimension greater than five, which are blow-ups of smooth varieties along smooth centers of dimension equal to the pseudoindex of the manifold. We obtain a classification of the possible cones of curves of these manifolds, and we prove that there is only one such manifold without a fiber type elementary contraction.
 Keywords
Fano manifolds;rational curves;
 Language
English
 Cited by
 References
1.
V. Ancona, T. Peternell, and J. Wisniewski, Fano bundles and splitting theorems on projective spaces and quadrics, Pacific J. Math. 163 (1994), no. 1, 17-42 crossref(new window)

2.
M. Andreatta, E. Chierici, and G. Occhetta, Generalized Mukai conjecture for special Fano varieties, Cent. Eur. J. Math. 2 (2004), no. 2, 272-293 crossref(new window)

3.
M. Andreatta and G. Occhetta, Special rays in the Mori cone of a projective variety, Nagoya Math. J. 168 (2002), 127-137

4.
M. Andreatta and G. Occhetta, Fano manifolds with long extremal rays, Asian J. Math. 9 (2005), no. 4, 523-543 crossref(new window)

5.
E. Ballico and J. A. Wisniewski, On Banica sheaves and Fano manifolds, Compositio Math. 102 (1996), no. 3, 313-335

6.
M. C. Beltrametti, A. J. Sommese, and J. A. Wi´sniewski, Results on varieties with many lines and their applications to adjunction theory, Complex algebraic varieties (Bayreuth, 1990), 16-38, Lecture Notes in Math., 1507, Springer, Berlin, 1992 crossref(new window)

7.
L. Bonavero, Pseudo-index of Fano manifolds and smooth blow-ups, Geom. Dedicata 114 (2005), 79-86 crossref(new window)

8.
L. Bonavero, F. Campana, and J. A. Wisniewski, Varietes complexes dont l'eclatee en un point est de Fano, C. R. Math. Acad. Sci. Paris 334 (2002), no. 6, 463-468 crossref(new window)

9.
L. Bonavero, C. Casagrande, O. Debarre, and S. Druel, Sur une conjecture de Mukai, Comment. Math. Helv. 78 (2003), no. 3, 601-626 crossref(new window)

10.
F. Campana, Coreduction algebrique d'un espace analytique faiblement Kahlerien compact, Invent. Math. 63 (1981), no. 2, 187-223 crossref(new window)

11.
E. Chierici and G. Occhetta, The cone of curves of Fano varieties of coindex four, Internat. J. Math. 17 (2006), no. 10, 1195-1221 crossref(new window)

12.
E. Chierici and G. Occhetta, Fano fivefolds of index two with blow-up structure, Tohoku Math. J. 60 (2008), no. 4, 471-498 crossref(new window)

13.
P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 3, 457-472 crossref(new window)

14.
S. Kebekus, Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron, Complex geometry (G¨ottingen, 2000), 147-155, Springer, Berlin, 2002

15.
J. Koll´ar, Rational Curves on Algebraic Varieties, Springer-Verlag, Berlin, 1996

16.
A. Langer, Fano 4-folds with scroll structure, Nagoya Math. J. 150 (1998), 135-176

17.
A. Lanteri, M. Palleschi, and A. J. Sommese, Del Pezzo surfaces as hyperplane sections, J. Math. Soc. Japan 49 (1997), no. 3, 501-529 crossref(new window)

18.
C. Novelli and G. Occhetta, Ruled Fano fivefolds of index two, Indiana Univ. Math. J. 56 (2007), no. 1, 207-241 crossref(new window)

19.
G. Occhetta, A characterization of products of projective spaces, Canad. Math. Bull. 49 (2006), no. 2, 270-280 crossref(new window)

20.
J. G. Semple and L. Roth, Introduction to Algebraic Geometry, Reprint of the 1949 original, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1985

21.
M. Szurek and J. Wisniewski, Fano bundles of rank 2 on surfaces, Compositio Math. 76 (1990), no. 1-2, 295-305

22.
M. Szurek and J. Wisniewski, Fano bundles over P3 and Q3, Pacific J. Math. 141 (1990), no. 1, 197-208 crossref(new window)

23.
M. Szurek and J. Wisniewski, On Fano manifolds, which are Pk-bundles over P2, Nagoya Math. J. 120 (1990), 89-101

24.
M. Szurek and J. Wisniewski, Conics, conic fibrations and stable vector bundles of rank 2 on some Fano threefolds, Rev. Roumaine Math. Pures Appl. 38 (1993), no. 7-8, 729-741

25.
T. Tsukioka, Del Pezzo surface fibrations obtained by blow-up of a smooth curve in a projective manifold, C. R. Math. Acad. Sci. Paris 340 (2005), no. 8, 581-586 crossref(new window)

26.
T. Tsukioka, Sur les vari´et´es de Fano obtenues par eclatement dune courbe lisse dans une variete projective, Ph. D. thesis, Universite de Nancy 1, March 2005

27.
J. A. Wisniewski, Length of extremal rays and generalized adjunction, Math. Z. 200 (1989), no. 3, 409-427 crossref(new window)

28.
J. A. Wisniewski, On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math. 417 (1991), 141-157 crossref(new window)

29.
J. A. Wisniewski, Fano manifolds and quadric bundles, Math. Z. 214 (1993), no. 2, 261-271 crossref(new window)