JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY COMPUTATION VIA GROBNER BASIS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILITY COMPUTATION VIA GROBNER BASIS
Hassett, Brendan; Hyeon, Dong-Hoon; Lee, Yong-Nam;
  PDF(new window)
 Abstract
In this article, we discuss a Grobner basis algorithm related to the stability of algebraic varieties in the sense of Geometric Invariant Theory. We implement the algorithm with Macaulay 2 and use it to prove the stability of certain curves that play an important role in the log minimal model program for the moduli space of curves.
 Keywords
geometric invariant theory;Grobner basis;moduli of curves;
 Language
English
 Cited by
1.
CHOW STABILITY OF CANONICAL GENUS 4 CURVES,;

대한수학회보, 2013. vol.50. 3, pp.1029-1040 crossref(new window)
1.
A Birational Contraction of Genus 2 Tails in the Moduli Space of Genus 4 Curves I, International Mathematics Research Notices, 2013  crossref(new windwow)
2.
An Outline of the Log Minimal Model Program for the Moduli Space of Curves, Experimental Mathematics, 2016, 1  crossref(new windwow)
3.
Log minimal model program for the moduli space of stable curves: the first flip, Annals of Mathematics, 2013, 177, 3, 911  crossref(new windwow)
4.
Gröbner Techniques for Low-Degree Hilbert Stability, Experimental Mathematics, 2011, 20, 1, 34  crossref(new windwow)
5.
A State Polytope Decomposition Formula, Proceedings of the Edinburgh Mathematical Society, 2015, 1  crossref(new windwow)
6.
CHOW STABILITY OF CANONICAL GENUS 4 CURVES, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 1029  crossref(new windwow)
 References
1.
D. Bayer, The division algorithm and the Hilbert scheme, Ph. D. Thesis, Harvard University, 1982

2.
D. Bayer and I. Morrison, Standard bases and geometric invariant theory. I. Initial ideals and state polytopes, J. Symbolic Comput. 6 (1988), no. 2-3, 209-217 crossref(new window)

3.
D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995

4.
D. Grayson and M. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/

5.
B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: The first flip, arXiv:math.AG/0806.3444v1, 2008

6.
D. Hyeon and Y. Lee, Stability of bicanonical curves of genus three, Journal of Pure and Applied Algebra (2009), doi:10.1016/j.jpaa.2009.02.015 crossref(new window)

7.
D. Hyeon and Y. Lee, Log minimal model program for the moduli space of stable curves of genus three, arXiv:math.AG/0703093, 2007

8.
D. Hyeon and Y. Lee, Stability of tri-canonical curves of genus two, Math. Ann. 337 (2007), no. 2, 479-488 crossref(new window)

9.
M. Kapranov, B. Sturmfels, and A. Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), no. 1, 189-218 crossref(new window)

10.
F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I, Preliminaries on “det” and “Div”. Math. Scand. 39 (1976), no. 1, 19–55

11.
I. Morrison, Projective stability of ruled surfaces, Invent. Math. 56 (1980), no. 3, 269-304 crossref(new window)

12.
D. Schubert, A new compactification of the moduli space of curves, Compositio Math. 78 (1991), no. 3, 297-313