JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A CLASS OF NONMONOTONE SPECTRAL MEMORY GRADIENT METHOD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A CLASS OF NONMONOTONE SPECTRAL MEMORY GRADIENT METHOD
Yu, Zhensheng; Zang, Jinsong; Liu, Jingzhao;
  PDF(new window)
 Abstract
In this paper, we develop a nonmonotone spectral memory gradient method for unconstrained optimization, where the spectral stepsize and a class of memory gradient direction are combined efficiently. The global convergence is obtained by using a nonmonotone line search strategy and the numerical tests are also given to show the efficiency of the proposed algorithm.
 Keywords
unconstrained optimization;spectral memory gradient method;nonmonotone technique;global convergence;
 Language
English
 Cited by
 References
1.
J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988), no. 1, 141-148 crossref(new window)

2.
E. G. Birgin and J. M. Martinez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001), no. 2, 117-128 crossref(new window)

3.
E. G. Birgin, J. M. Martinez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim. 10 (2000), no. 4, 1196-1211 crossref(new window)

4.
E. G. Birgin, J. M. Martinez, and M. Raydan, Spectral projected gradient methods, Encyclopedia of Optimization, C. A. Floudas and P. M. Pardalos, (Eds.), to appear

5.
E. E. Cragg and A. V. Levy, Study on a supermemory gradient method for the minimization of functions, J. Optimization Theory Appl. 4 (1969), 191-205 crossref(new window)

6.
L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal. 23 (1986), no. 4, 707-716 crossref(new window)

7.
W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, 187. Springer-Verlag, Berlin-New York, 1981

8.
A. Miele and J. W. Cantrell, Study on a memory gradient method for the minimization of functions, J. Optimization Theory Appl. 3 (1969), 459-470 crossref(new window)

9.
Y. Narushima and H. Yabe, Global convergence of a memory gradient method for unconstrained optimization, Comput. Optim. Appl. 35 (2006), no. 3, 325-346 crossref(new window)

10.
M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim. 7 (1997), no. 1, 26-33 crossref(new window)

11.
K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, 282. Springer-Verlag, Berlin, 1987

12.
P. L. Toint, Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints, Math. Programming 77 (1997), no. 1, Ser. A, 69-94 crossref(new window)