JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A MULTIGRID METHOD FOR AN OPTIMAL CONTROL PROBLEM OF A DIFFUSION-CONVECTION EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A MULTIGRID METHOD FOR AN OPTIMAL CONTROL PROBLEM OF A DIFFUSION-CONVECTION EQUATION
Baek, Hun-Ki; Kim, Sang-Dong; Lee, Hyung-Chun;
  PDF(new window)
 Abstract
In this article, an optimal control problem associated with convection-diffusion equation is considered. Using Lagrange multiplier, the optimality system is obtained. The derived optimal system becomes coupled, non-symmetric partial differential equations. For discretizations and implementations, the finite element multigrid V-cycle is employed. The convergence analysis of finite element multigrid methods for the derived optimal system is shown. Some numerical simulations are performed.
 Keywords
optimal control problem;multigrid method;diffusion-convection equation;
 Language
English
 Cited by
1.
A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS,;;

대한수학회지, 2012. vol.49. 4, pp.765-778 crossref(new window)
1.
A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS, Journal of the Korean Mathematical Society, 2012, 49, 4, 765  crossref(new windwow)
2.
Multigrid Optimization Methods for the Optimal Control of Convection–Diffusion Problems with Bilinear Control, Journal of Optimization Theory and Applications, 2016, 168, 2, 510  crossref(new windwow)
 References
1.
Z.-Z. Bai and M. K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput. 26 (2005), no. 5, 1710-1724 crossref(new window)

2.
R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math. 106 (2007), no. 3, 349-367 crossref(new window)

3.
P. B. Bochev and M. D. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and control problems, SIAM J. Numer. Anal. 43 (2006), no. 6, 2517-2543 crossref(new window)

4.
A. Borzi, Multigrid methods for parabolic distributed optimal control problems, J. Comput. Appl. Math. 157 (2003), no. 2, 365-382 crossref(new window)

5.
A. Borzi and K. Kunisch, The numerical solution of the steady state solid fuel ignition model and its optimal control, SIAM J. Sci. Comput. 22 (2000), no. 1, 263-284 crossref(new window)

6.
A. Borzi, K. Kunisch, and D. Y. Kwak, Accuracy and convergence properties of the finite difference multigrid solution of an optimal control optimality system, SIAM J. Control Optim. 41 (2002), no. 5, 1477-1497 crossref(new window)

7.
J. H. Bramble, Multigrid Methods, Pitman Res. Notes Math, Ser. 294, John Wiley, New York, 1993

8.
J. H. Bramble, D. Y. Kwak, and J. E. Pasciak, Uniform convergence of multigrid V - cycle iterations for indefinite and nonsymmetric problems, SIAM J. Numer. Anal. 31 (1994), no. 6, 1746-1763 crossref(new window)

9.
J. H. Bramble and J. E. Pasciak, New estimates for multilevel algorithms including the V -cycle, Math. Comp. 60 (1993), no. 202, 447-471 crossref(new window)

10.
J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems, Math. Comp. 51 (1988), no. 184, 389-414 crossref(new window)

11.
J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Math. Comp. 56 (1991), no. 193, 1-34 crossref(new window)

12.
S. C. Brenner, Convergence of the multigrid V -cycle algorithm for second-order boundary value problems without full elliptic regularity, Math. Comp. 71 (2002), no. 238, 507-525 crossref(new window)

13.
S. C. Brenner and L. R. Scott, The mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 2002

14.
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998

15.
J. L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1293-1316 crossref(new window)

16.
M. D. Gunzburger, Perspectives in Flow Control and Optimization, Advances in Design and Control, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003

17.
M. D. Gunzburger and H.-C. Lee, Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, Comput. Methods Appl. Mech. Engrg. 118 (1994), no. 1-2, 133-152 crossref(new window)

18.
M. D. Gunzburger and H.-C. Lee, Analysis and approximation of optimal control problems for first-order elliptic systems in three dimensions, Appl. Math. Comput. 100 (1999), no. 1, 49-70 crossref(new window)

19.
W. Hackbusch, Multigrid Methods and Applications, Springer Series in Computational Mathematics, 4. Springer-Verlag, Berlin, 1985

20.
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971

21.
P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems, Marcel Dekker, New York, 1994

22.
M. H. van Raalte and P. W. Hemker, Two-level multigrid analysis for the convectiondiffusion equation discretized by a discontinuous Galerkin method, Numer. Linear Algebra Appl. 12 (2005), no. 5-6, 563-584 crossref(new window)

23.
A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959-962 crossref(new window)

24.
J. Wang, Convergence analysis of multigrid algorithms for nonselfadjoint and indefinite elliptic problems, SIAM J. Numer. Anal. 30 (1993), no. 1, 275-285 crossref(new window)