JOURNAL BROWSE
Search
Advanced SearchSearch Tips
UPPER TRIANGULAR OPERATORS WITH SVEP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
UPPER TRIANGULAR OPERATORS WITH SVEP
Duggal, Bhagwati Prashad;
  PDF(new window)
 Abstract
A Banach space operator A B(X) is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, A (), if every part of A is polaroid. Let $X^n\;
 Keywords
Banach space;n-normal operator;hereditarily polaroid operator;single valued extension property;Weyl`s theorem;
 Language
English
 Cited by
1.
A Note on Drazin Invertibility for Upper Triangular Block Operators, Mediterranean Journal of Mathematics, 2013, 10, 3, 1497  crossref(new windwow)
 References
1.
P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.

2.
B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), no. 2, 203–217.

3.
B. P. Duggal, Polaroid operators satisfying Weyl's theorem, Linear Algebra Appl. 414 (2006), no. 1, 271–277. crossref(new window)

4.
B. P. Duggal, Upper triangular operators with SVEP: spectral properties, Filomat 21 (2007), no. 1, 25–37.

5.
B. P. Duggal, Weyl's theorem and hypercyclic/supercyclic operators, J. Math. Anal. Appl. 335 (2007), no. 2, 990–995. crossref(new window)

6.
B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyl's theorem, J. Math. Anal. Appl. 340 (2008), no. 1, 366–373. crossref(new window)

7.
B. P. Duggal, Polaroid operators, SVEP and perturbed Browder, Weyl theorems, Rend. Circ. Mat. Palermo (2) 56 (2007), no. 3, 317–330. crossref(new window)

8.
B. P. Duggal, R. E. Harte, and I. H. Jeon, Polaroid operators and Weyl's theorem, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1345–1349. crossref(new window)

9.
H. G. Heuser, Functional Analysis, John Wiley and Sons, 1982.

10.
I. B. Jung, E. Ko, and C. Pearcy, Spectral properties of some operator matrices, Arch. Math. (Basel) 80 (2003), no. 1, 37–46.

11.
K. B. Laursen and M. M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.

12.
M. Mbekhta, Generalisation de la decomposition de Kato aux operateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), no. 2, 159–175. crossref(new window)

13.
C. Pearcy, Some Recent Developments in Operator Theory, Regional Conference Series in Mathematics, No. 36. American Mathematical Society, Providence, R.I., 1978.

14.
V. Rakocevic, Semi-Browder operators and perturbations, Studia Math. 122 (1997), no. 2, 131–137.