JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MIXED CHORD-INTEGRALS OF STAR BODIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MIXED CHORD-INTEGRALS OF STAR BODIES
Fenghong, Lu;
  PDF(new window)
 Abstract
The mixed chord-integrals are defined. The Fenchel-Aleksandrov inequality and a general isoperimetric inequality for the mixed chordintegrals are established. Furthermore, the dual general Bieberbach inequality is presented. As an application of the dual form, a Brunn-Minkowski type inequality for mixed intersection bodies is given.
 Keywords
mixed intersection bodies;mixed chord-integrals;Fenchel-Aleksandrov inequality;Bieberbach inequality;
 Language
English
 Cited by
1.
L p Harmonic radial combinations of star bodies, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
2.
General L p $L_{p}$ -mixed chord integrals of star bodies, Journal of Inequalities and Applications, 2016, 2016, 1  crossref(new windwow)
 References
1.
G. D. Chakerian, Isoperimetric inequalities for the mean width of a convex body, Geometriae Dedicata 1 (1973), no. 3, 356–362.

2.
G. D. Chakerian, The mean volume of boxes and cylinders circumscribed about a convex body, Israel J. Math. 12 (1972), 249–256. crossref(new window)

3.
R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, Cambridge, 1995.

4.
H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, London, 1934.

5.
G. Leng, C. Zhao, B. He, and X. Li, Inequalities for polars of mixed projection bodies, Sci. China Ser. A 47 (2004), no. 2, 175–186. crossref(new window)

6.
E. Lutwak, Width-integrals of convex bodies, Proc. Amer. Math. Soc. 53 (1975), no. 2, 435–439. crossref(new window)

7.
E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531–538. crossref(new window)

8.
E. Lutwak, A general Bieberbach inequality, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 493–495. crossref(new window)

9.
E. Lutwak, Mixed width-integrals of convex bodies, Israel J. Math. 28 (1977), no. 3, 249–253. crossref(new window)

10.
E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), no. 1, 91–105. crossref(new window)

11.
E. Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. crossref(new window)

12.
E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (1993), no. 2, 901–916. crossref(new window)

13.
L. Santalo, An affine invariant for convex bodies of n-dimensional space, Portugaliae Math. 8 (1949), 155–161.

14.
R. Schneider, Convex Body: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.

15.
G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777–801. crossref(new window)

16.
C. J. Zhao and G. S. Leng, On polars of mixed projection bodies, J. Math. Anal. Appl. 316 (2006), no. 2, 664–678. crossref(new window)