JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INVARIANT RINGS AND DUAL REPRESENTATIONS OF DIHEDRAL GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INVARIANT RINGS AND DUAL REPRESENTATIONS OF DIHEDRAL GROUPS
Ishiguro, Kenshi;
  PDF(new window)
 Abstract
The Weyl group of a compact connected Lie group is a reflection group. If such Lie groups are locally isomorphic, the representations of the Weyl groups are rationally equivalent. They need not however be equivalent as integral representations. Turning to the invariant theory, the rational cohomology of a classifying space is a ring of invariants, which is a polynomial ring. In the modular case, we will ask if rings of invariants are polynomial algebras, and if each of them can be realized as the mod p cohomology of a space, particularly for dihedral groups.
 Keywords
invariant theory;unstable algebra;pseudoreflection group;Lie group;p-compact group;classifying space;
 Language
English
 Cited by
1.
INVARIANT RINGS AND REPRESENTATIONS OF SYMMETRIC GROUPS,;

대한수학회보, 2013. vol.50. 4, pp.1193-1200 crossref(new window)
1.
INVARIANT RINGS AND REPRESENTATIONS OF SYMMETRIC GROUPS, Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1193  crossref(new windwow)
 References
1.
J. F. Adams and Z. Mahmud, Maps between classifying spaces, Inv. Math. 35 (1976), 1–41. crossref(new window)

2.
J. F. Adams and C. W. Wilkerson, Finite H-spaces and algebras over the Steenrod algebra, Ann. of Math. (2) 111 (1980), no. 1, 95-143. crossref(new window)

3.
K. K. S. Andersen and J. Grodal, The classification of 2-compact groups, Preprint.

4.
K. K. S. Andersen and J. Grodal, The Steenrod problem of realizing polynomial cohomology rings, Preprint.

5.
A. Clark and J. Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425–434. crossref(new window)

6.
M. Craig, A characterization of certain extreme forms, Illinois J. Math. 20 (1976), no. 4, 706–717.

7.
W. G. Dwyer, H. R. Miller, and C. W. Wilkerson, Homotopical uniqueness of classifying spaces, Topology 31 (1992), no. 1, 29–45. crossref(new window)

8.
W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395–442. crossref(new window)

9.
W. G. Dwyer and C. W. Wilkerson, Kahler differentials, the T-functor, and a theorem of Steinberg, Trans. Amer. Math. Soc. 350 (1998), no. 12, 4919–4930. crossref(new window)

10.
W. G. Dwyer and C. W. Wilkerson, Poincar´e duality and Steinberg's theorem on rings of coinvariants, Preprint.

11.
K. Ishiguro, Projective unitary groups and K-theory of classifying spaces, Fukuoka Univ. Sci. Rep. 28 (1998), no. 1, 1–6.

12.
K. Ishiguro, Classifying spaces and a subgroup of the exceptional Lie group G2, Groups of homotopy self-equivalences and related topics (Gargnano, 1999), 183–193, Contemp. Math., 274, Amer. Math. Soc., Providence, RI, 2001. crossref(new window)

13.
R. M. Kane, The Homology of Hopf Spaces, North-Holland Mathematical Library, 40. North-Holland Publishing Co., Amsterdam, 1988.

14.
R. M. Kane, Reflection Groups and Invariant Theory, CMS Books in Mathematics/Ouvrages de Math´ematiques de la SMC, 5. Springer-Verlag, New York, 2001.

15.
G. Kemper and G. Malle, The finite irreducible linear groups with polynomial ring of invariants, Transform. Groups 2 (1997), no. 1, 57–89. crossref(new window)

16.
M. Neusel and L. Smith, Invariant Theory of Finite Groups, Mathematical Surveys and Monographs, 94. American Mathematical Society, Providence, RI, 2002.

17.
D. Notbohm, Classifying spaces of compact Lie groups and finite loop spaces, Handbook of algebraic topology, 1049–1094, North-Holland, Amsterdam, 1995.

18.
J. Segal, Polynomial invariant rings isomorphic as modules over the Steenrod algebra, J. London Math. Soc. (2) 62 (2000), no. 3, 729–739. crossref(new window)

19.
J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973.

20.
L. Smith, The nonrealizability of modular rings of polynomial invariants by the cohomology of a topological space, Proc. Amer. Math. Soc. 86 (1982), no. 2, 339–340. crossref(new window)

21.
L. Smith, Polynomial Invariants of Finite Groups, Research Notes in Mathematics, 6. AK Peters, Ltd., Wellesley, MA, 1995.

22.
C. B. Thomas, Characteristic Classes and the Cohomology of Finite Groups, Cambridge Studies in Advanced Mathematics, 9. Cambridge University Press, Cambridge, 1986.