JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHARACTERIZATION OF THE GROUPS Dp+1(2) AND Dp+1(3) USING ORDER COMPONENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHARACTERIZATION OF THE GROUPS Dp+1(2) AND Dp+1(3) USING ORDER COMPONENTS
Darafsheh, Mohammad Reza;
  PDF(new window)
 Abstract
In this paper we will prove that the groups (2) and (3), where p is an odd prime number, are uniquely determined by their sets of order components. A main consequence of our result is the validity of Thompson's conjecture for the groups (2) and (3).
 Keywords
prime graph;order component;linear group;
 Language
English
 Cited by
1.
Characterization of G 2(q), where 2 < q ≡ −1(mod 3), by order components, Siberian Mathematical Journal, 2013, 54, 5, 883  crossref(new windwow)
2.
ON THE THOMPSON'S CONJECTURE ON CONJUGACY CLASSES SIZES, International Journal of Algebra and Computation, 2013, 23, 01, 37  crossref(new windwow)
 References
1.
S. H. Alavi and A. Daneshkhah, A new characterization of alternating and symmetric groups, J. Appl. Math. Comput. 17 (2005), no. 1-2, 245–258. crossref(new window)

2.
G. Y. Chen, A new characterization of sporadic simple groups, Algebra Colloq. 3 (1996), no. 1, 49–58.

3.
G. Y. Chen, A new characterization of $PSL_2(q)$, Southeast Asian Bull. Math. 22 (1998), no. 3, 257–263.

4.
G. Y. Chen, On Thompson's conjecture, J. Algebra 185 (1996), no. 1, 184–193. crossref(new window)

5.
G. Y. Chen, On structure of Frobenius and 2-Frobenius group, J. Southwest China Normal Univ. 20 (1995), no. 5, 485–487.

6.
G. Y. Chen and H. Shi, $^2D_n(3)(9{\leq}n = 2^m + 1\;not\;a\;prime)$ can be characterized by its order components, J. Appl. Math. Comput. 19 (2005), no. 1-2, 353–362. crossref(new window)

7.
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.

8.
P. Crescenzo, A Diophantine equation which arises in the theory of finite groups, Advances in Math. 17 (1975), no. 1, 25–29. crossref(new window)

9.
M. R. Darafsheh, On non-isomorphic groups with the same set of order components, J. Korean Math. Soc. 45 (2008), no. 1, 137–150. crossref(new window)

10.
M. R. Darafsheh, Characterizability of the group $^3D_p(3)$ by its order components, where $p{\geq}5$ is a prime number not of the form $2^m$ + 1, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 7, 1117–1126. crossref(new window)

11.
M. R. Darafsheh and A. Mahmiani, A quantitative characterization of the linear group $L_{p+1}(2)$ where p is a prime number, Kumamoto J. Math. 20 (2007), 33–50.

12.
M. R. Darafsheh and A. Mahmiani, A characterization of the group $^2D_n(2)\;where\;n = 2^m + 1{\geq}5$, J. Appl. Math. Comput. (DOI. 10.1007/s12190-008-0223-4).

13.
A. Iranmanesh, S. H. Alavi, and B. Khosravi, A characterization of PSL(3, q) where q is an odd prime power, J. Pure Appl. Algebra 170 (2002), no. 2-3, 243–254. crossref(new window)

14.
A. Iranmanesh, S. H. Alavi, and B. Khosravi, A characterization of PSL(3, q) for q = 2m, Acta Math. Sin. (Engl. Ser.) 18 (2002), no. 3, 463–472. crossref(new window)

15.
A. Iranmanesh, B. Khosravi, and S. H. Alavi, A characterization of $PSU_3(q)$ for q > 5, Southeast Asian Bull. Math. 26 (2002), no. 1, 33–44.

16.
C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters, Oxford University Press, New York, 1995.

17.
A. Khosravi and B. Khosravi, A new characterization of PSL(p, q), Comm. Algebra 32 (2004), no. 6, 2325–2339. crossref(new window)

18.
A. Khosravi and B. Khosravi, A new characterization of some alternating and symmetric groups, Int. J. Math. Math. Sci. 2003 (2003), no. 45, 2863–2872. crossref(new window)

19.
Behrooz Khosravi, Behnam Khosravi, and Bahman Khosravi, The number of isomorphism classes of finite groups with the set of order components of $C_4(q)$, Appl. Algebra Engrg. Comm. Comput. 15 (2005), no. 5, 349–359. crossref(new window)

20.
A. Khosravi and B. Khosravi, r-recognizability of $B_n(q)\;and\;C_n(q)\;where\;n = 2^m{\geq}4$, J. Pure Appl. Algebra 199 (2005), no. 1-3, 149–165. crossref(new window)

21.
A. S. Kondratev, On prime graph components of finite simple groups, Mat. Sb. 180 (1989), no. 6, 787–797, 864; translation in Math. USSR-Sb. 67 (1990), no. 1, 235–247.

22.
A. S. Kondratev and V. D. Mazurov, Recognition of alternating groups of prime degree from the orders of their elements, Sibirsk. Mat. Zh. 41 (2000), no. 2, 359–369, iii; translation in Siberian Math. J. 41 (2000), no. 2, 294–302.

23.
H. Shi and G. Y. Chen, $^2D_{p+1}(2)(5{\leq}p{\neq}2^m-1)$ can be characterized by its order components, Kumamoto J. Math. 18 (2005), 1–8.

24.
J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487–513. crossref(new window)

25.
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284. crossref(new window)