JOURNAL BROWSE
Search
Advanced SearchSearch Tips
YOUNG MEASURES, CARTESIAN MAPS, AND POLYCONVEXITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
YOUNG MEASURES, CARTESIAN MAPS, AND POLYCONVEXITY
Bernard, Patrick; Bessi, Ugo;
  PDF(new window)
 Abstract
We consider the variational problem consisting of minimizing a polyconvex integrand for maps between manifolds. We offer a simple and direct proof of the existence of a minimizing map. The proof is based on Young measures.
 Keywords
calculus of variations;polyconvexity;gradient measures;
 Language
English
 Cited by
 References
1.
R. A. Adams, Sobolev Spaces, Academic press, New York, 1975.

2.
L. Ambrosio, N. Gigli, and G. Savare, Gradient flows, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2005.

3.
J. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. crossref(new window)

4.
J. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), no. 4, 325–388. crossref(new window)

5.
H. Berliocchi and J.-M. Lasry, Int´egrandes normales et mesures param´etr´ees en calcul des variations, Bull. Soc. Math. France 101 (1973), 129–184.

6.
P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 1, 85–121.

7.
P. Bernard, Young measures, superposition and transport, Indiana Univ. Math. J. 57 (2008), no. 1, 247–275. crossref(new window)

8.
Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Comm. Pure Appl. Math. 52 (1999), no. 4, 411–452. crossref(new window)

9.
G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics Series, 207. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.

10.
B. Dacorogna, Direct methods in the calculus of variations, Second edition. Applied Mathematical Sciences, 78. Springer, New York, 2008.

11.
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

12.
M. Giaquinta, G. Modica, and J. Soucek, Cartesian Currents in the Calculus of Variations I, Springer, Berlin, 1998.

13.
M. Giaquinta, G. Modica, and J. Soucek, Cartesian Currents in the Calculus of Variations II, Springer, Berlin, 1998.

14.
P. Pedregal, Parametrized Measures and Variational Principles, Progress in Nonlinear Differential Equations and their Applications, 30. Birkh auser Verlag, Basel, 1997.

15.
M. Valadier, A course on Young measures, Rend. Istit. Mat. Univ. Trieste 24 (1994), 349–394.

16.
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003.

17.
L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, Second edition, Chelsea, 1980.