JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEYL'S THEOREM AND TENSOR PRODUCT FOR OPERATORS SATISFYING T*k|T2|Tk≥T*k|T|2Tk
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEYL'S THEOREM AND TENSOR PRODUCT FOR OPERATORS SATISFYING T*k|T2|Tk≥T*k|T|2Tk
Kim, In-Hyoun;
  PDF(new window)
 Abstract
For a bounded linear operator T on a separable complex infinite dimensional Hilbert space , we say that T is a quasi-class (A, k) operator if . In this paper we prove that if T is a quasi-class (A, k) operator and f is an analytic function on an open neighborhood of the spectrum of T, then f(T) satisfies Weyl's theorem. Also, we consider the tensor product for quasi-class (A, k) operators.
 Keywords
quasi-class (A, k) operator;Weyl's theorem;tensor product;
 Language
English
 Cited by
1.
WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An* OPERATO,;;

대한수학회지, 2014. vol.51. 5, pp.1089-1104 crossref(new window)
1.
WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An*OPERATO, Journal of the Korean Mathematical Society, 2014, 51, 5, 1089  crossref(new windwow)
 References
1.
T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169–178.

2.
S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273–279. crossref(new window)

3.
L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288. crossref(new window)

4.
B. P. Duggal, Weyl's theorem for totally hereditarily normaloid operators, Rend. Circ. Mat. Palermo (2) 53 (2004), no. 3, 417–428. crossref(new window)

5.
B. P. Duggal, I. H. Jeon, and I. H. Kim, On Weyl's theorem for quasi-class A operators, J. Korean Math. Soc. 43 (2006), no. 4, 899–909. crossref(new window)

6.
T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389–403

7.
R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics, 109. Marcel Dekker, Inc., New York, 1988.

8.
J.-C. Hou, On the tensor products of operators, Acta Math. Sinica (N.S.) 9 (1993), no. 2, 195–202. crossref(new window)

9.
I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc. 41 (2004), no. 4, 617–627. crossref(new window)

10.
I. H. Jeon and I. H. Kim, On operators satisfying $T^{\ast}|T^2|T{\geq}T^{\ast}|T|^2T$, Linear Algebra Appl. 418 (2006), no. 2-3, 854–862. crossref(new window)

11.
I. H. Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42 (2005), no. 2, 269–277.

12.
W. Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998), no. 3, 319–331. crossref(new window)

13.
W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131–138 crossref(new window)

14.
W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61–64. crossref(new window)

15.
T. Saito, Hyponormal operators and related topics, Lectures on operator algebras (dedicated to the memory of David M. Topping; Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. II), pp. 533–664. Lecture Notes in Math., Vol. 247, Springer, Berlin, 1972.

16.
J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124 (1996), no. 1, 135–140. crossref(new window)

17.
K. Tanahashi, I. H. Jeon, I. H. Kim, and A. Uchiyama, Quasinilpotent part of class A or (p, k)-quasihyponormal operators (preprint).

18.
A. Uchiyama, Weyl's theorem for class A operators, Math. Inequal. Appl. 4 (2001), no. 1, 143–150.

19.
A. Uchiyama and S. V. Djordjevic, Weyls theorem for p-quasihyponormal operators (preprint).

20.
H. Weyl, Uber beschrankte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373–392. crossref(new window)