JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE GENERALIZED INVERSES A(1,2)T,S OF THE ADJOINTABLE OPERATORS ON THE HILBERT C^*-MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE GENERALIZED INVERSES A(1,2)T,S OF THE ADJOINTABLE OPERATORS ON THE HILBERT C^*-MODULES
Xu, Qingxiang; Zhang, Xiaobo;
  PDF(new window)
 Abstract
In this paper, we introduce and study the generalized inverse with the prescribed range T and null space S of an adjointable operator A from one Hilbert -module to another, and get some analogous results known for finite matrices over the complex field or associated rings, and the Hilbert space operators.
 Keywords
generalized inverse;Hilbert -module;adjointable operator;
 Language
English
 Cited by
1.
Volume Removed - Publisher's Disclaimer, Energy Procedia, 2011, 13, 1  crossref(new windwow)
2.
The Drazin inverse in an arbitrary semiring, Linear and Multilinear Algebra, 2011, 59, 9, 1019  crossref(new windwow)
 References
1.
D. S. Djordjevic and P. S. Stanimirovic, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J. 51(126) (2001), no. 3, 617–634. crossref(new window)

2.
D. S. Djordjevi´c and Y. Wei, Outer generalized inverses in rings, Comm. Algebra 33 (2005), no. 9, 3051–3060. crossref(new window)

3.
J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367–381. crossref(new window)

4.
E. C. Lance, Hilbert C*-modules, A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995.

5.
G. K. Pedersen, $C{\ast}$-algebras and their automorphism groups, London Mathematical Society Monographs, 14. Academic Press, Inc., London-New York, 1979.

6.
G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: theory and computations, Science Press, Beijing-New York, 2004.

7.
Y. Wei, A characterization and representation of the generalized inverse $A^{(2)}_{T,S}$ and its applications, Linear Algebra Appl. 280 (1998), no. 2-3, 87–96. crossref(new window)

8.
Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert $C{\ast}$-modules, Linear Algebra Appl. 428 (2008), no. 4, 992–1000. crossref(new window)

9.
Y. Yu and G. Wang, The generalized inverse $A^{(2)}_{T,S}$ of a matrix over an associative ring, J. Aust. Math. Soc. 83 (2007), no. 3, 423–437. crossref(new window)

10.
B. Zheng and C. Zhong, Existence and expressions for the generalized inverse $A^{(2)}_{T,S}$ of linear operators on Hilbert spaces, Acta Math. Sci. Ser. A Chin. Ed. 27 (2007), no. 2, 288–295.