TESTS FOR VARYING-COEFFICIENT PARTS ON VARYING-COEFFICIENT SINGLE-INDEX MODEL

- Journal title : Journal of the Korean Mathematical Society
- Volume 47, Issue 2, 2010, pp.385-407
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2010.47.2.385

Title & Authors

TESTS FOR VARYING-COEFFICIENT PARTS ON VARYING-COEFFICIENT SINGLE-INDEX MODEL

Huang, Zhensheng; Zhang, Riquan;

Huang, Zhensheng; Zhang, Riquan;

Abstract

To study the relationship between the levels of chemical pollutants and the number of daily total hospital admissions for respiratory diseases and to find the effect of temperature/relative humidity on the admission number, Wong et al. [17] introduced the varying-coefficient single-index model (VCSIM). As pointed out, it is a popular multivariate nonparametric fitting technique. However, the tests of the model have not been very well developed. In this paper, based on the estimators obtained by the local linear technique, the average method and the one-step back-fitting technique in the VCSIM, the generalized likelihood ratio (GLR) tests for varying-coefficient parts on the VCSIM are established. Under the null hypotheses the new proposed GLR tests follow the -distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Simulations are conducted to evaluate the test procedure empirically. A real example is used to illustrate the performance of the testing approach.

Keywords

averaged method;back-fitting algorithms;generalized likelihood ratio test;local linear method;varying-coefficient single-index model;Wilks phenomenon;

Language

English

Cited by

1.

2.

3.

4.

5.

References

1.

Z. Cai, J. Fan, and Q. Yao, Functional-coefficient regression models for nonlinear time series, J. Amer. Statist. Assoc. 95 (2000), no. 451, 941–956.

2.

R. J. Carroll, J. Fan, I. Gijbel, and M. P. Wand, Generalized partially linear single-index models, J. Amer. Statist. Assoc. 92 (1997), no. 438, 477–489.

3.

R. Chen and R. S. Tsay, Functional-coefficient autoregressive models, J. Amer. Statist. Assoc. 88 (1993), no. 421, 298–308.

4.

P. de Jong, A central limit theorem for generalized quadratic forms, Probab. Theory Related Fields 75 (1987), no. 2, 261–277.

5.

J. Fan and I. Gijbels, Local Polynomial Modelling and its Applications, Monographs on Statistics and Applied Probability, 66. Chapman & Hall, London, 1996.

6.

J. Fan and J. Jiang, Nonparametric inferences for additive models, J. Amer. Statist. Assoc. 100 (2005), no. 471, 890–907.

7.

J. Fan and J. Zhang, Sieve empirical likelihood ratio tests for nonparametric functions, Ann. Statist. 32 (2004), no. 5, 1858–1907.

8.

J. Fan and W. Zhang, Generalised likelihood ratio tests for spectral density, Biometrika 91 (2004), no. 1, 195–209.

9.

J. Fan, C. Zhang, and J. Zhang, Generalized likelihood ratio statistics and Wilks phenomenon, Ann. Statist. 29 (2001), no. 1, 153–193.

10.

J. Fan, Q. Yao, and Z. Cai, Adaptive varying-coefficient linear models, J. R. Stat. Soc. Ser. B Stat. Methodol. 65 (2003), no. 1, 57–80.

11.

W. Hardle, P. Hall, and H. Ichimura, Optimal smoothing in single-index models, Ann. Statist. 21 (1993), no. 1, 157–178.

12.

T. Hastie and R. Tibshirani, Generalized Additive Models, Monographs on Statistics and Applied Probability, 43. Chapman and Hall, Ltd., London, 1990.

13.

T. Hastie and R. Tibshirani, Varying-coefficient models, J. Roy. Statist. Soc. Ser. B 55 (1993), no. 4, 757–796.

14.

D. R. Hoover, J. A. Rice, C. O.Wu, and L. P. Yang, Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data, Biometrika 85 (1998), no. 4, 809–822.

15.

W. Ip, H.Wong, and R. Q. Zhang, Generalized likelihood ratio test for varying-coefficient models with different smoothing variables, Comput. Statist. Data Anal. 51 (2007), no. 9, 4543–4561.

16.

O. V. Lepski and V. G. Spokoiny, Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative, Bernoulli 5 (1999), no. 2, 333–358.

17.

H. Wong, W. Ip, and R. Q. Zhang, Varying-coefficient single-index model, Comput. Statist. Data Anal. 52 (2008), no. 3, 1458–1476.

18.

Y. Xia, H. Tong, and W. K. Li, On extended partially linear single-index models, Biometrika 86 (1999), no. 4, 831–842.