JOURNAL BROWSE
Search
Advanced SearchSearch Tips
IDENTITIES ARISING FROM GAUSS SUMS FOR SYMPLECTIC AND ORTHOGONAL GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
IDENTITIES ARISING FROM GAUSS SUMS FOR SYMPLECTIC AND ORTHOGONAL GROUPS
Chae, Hi-Joon; Kim, Dae-San;
  PDF(new window)
 Abstract
We express Gauss sums for symplectic and orthogonal groups over finite fields as averages of exponential sums over certain maximal tori. Together with our previous results, we obtain some interesting identities involving various classical Gauss and Kloosterman sums.
 Keywords
Gauss sums;exponential sums;symplectic groups;orthogonal groups;
 Language
English
 Cited by
 References
1.
G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.

2.
B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Canad. Math. Soc. Ser. Monographs Adv. Texts 21, Wiley, New York, 1998.

3.
H. Chae and D. S. Kim, Identities arising from Gauss sums for finite classical groups, J. Number Theory 128 (2008), no. 7, 2010–2024. crossref(new window)

4.
H. Chae and D. S. Kim, A generalization of power moments of Kloosterman sums, Arch. Math. (Basel) 89 (2007), no. 2, 152–156. crossref(new window)

5.
P. Deligne, Applications de la formula des traces aux sommes trigonometriques, in Cohomologie Etale, Seminaire de Geometrie Algebrique du Bois-Marie SGA 4 1/2 by P. Deligne, Lecture Notes in Math. 569 (1977), 168–232.

6.
Y.-K. Jeong, I.-S. Lee, H. Oh, and K.-H. Park, Gauss sum for the adjoint representation of GLn(q) and SLn(q), Acta Arith. 95 (2000), no. 1, 1–16.

7.
D. S. Kim, Gauss sums for general and special linear groups over a finite field, Arch. Math. (Basel) 69 (1997), no. 4, 297–304. crossref(new window)

8.
D. S. Kim, Gauss sums for O−(2n, q), Acta Arith. 80 (1997), no. 4, 343–365.

9.
D. S. Kim, Gauss sums for U(2n + 1, $q^2$) J. Korean Math. Soc. 34 (1997), no. 4, 871–894.

10.
D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), no. 1, 55–71. crossref(new window)

11.
D. S. Kim, Gauss sums for O(2n + 1, q), Finite Fields Appl. 4 (1998), no. 1, 62–86. crossref(new window)

12.
D. S. Kim, Gauss sums for U(2n, $q^2$), Glasgow Math. J. 40 (1998), no. 1, 79–95. crossref(new window)

13.
D. S. Kim, Exponential sums for O−(2n, q) and their applications, Acta Arith. 97 (2001), no. 1, 67–86. crossref(new window)

14.
D. S. Kim, Sums for U(2n, q2) and their applications, Acta Arith. 101 (2002), no. 4, 339-363. crossref(new window)

15.
D. S. Kim and I.-S. Lee, Gauss sums for O+(2n, q), Acta Arith. 78 (1996), no. 1, 75–89.

16.
I.-S. Lee and K.-H. Park, Gauss sums for G2(q), Bull. Korean Math. Soc. 34 (1997), no. 2, 305–315.

17.
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Math. Appl. 20, Cambridge University Press, Cambridge, 1987.

18.
I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1998.