JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Lp ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Lp ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP
Yu, Liu;
  PDF(new window)
 Abstract
We investigate the Schrdinger type operator $H_2\;
 Keywords
Heisenberg group;Schrdinger operators;reverse Hlder class;
 Language
English
 Cited by
1.
Some estimates for commutators of Riesz transform associated with Schrödinger type operators, Czechoslovak Mathematical Journal, 2016, 66, 1, 169  crossref(new windwow)
2.
Hardy Type Estimates for Riesz Transforms Associated with Schr?dinger Operators on the Heisenberg Group, Pure Mathematics, 2015, 05, 06, 291  crossref(new windwow)
3.
Some estimates for commutators of Riesz transforms associated with Schrödinger operators, Journal of Mathematical Analysis and Applications, 2014, 419, 1, 298  crossref(new windwow)
4.
The Higher Order Riesz Transform andBMOType Space Associated with Schrödinger Operators on Stratified Lie Groups, Journal of Function Spaces and Applications, 2013, 2013, 1  crossref(new windwow)
 References
1.
C. Benson, A. H. Dooley, and G. Ratcliff, Fundamental solutions for powers of the Heisenberg sub-Laplacian, Illinois J. Math. 37 (1993), no. 3, 455–476.

2.
C. Berenstein, D. C. Chang, and J. Z. Tie, Laguerre Calculus And its Applications on The Heisenberg Group, American Mathematical Society, International press, 2001.

3.
T. Coulhon, D. Muller, and J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann. 305 (1996), no. 2, 369–379. crossref(new window)

4.
C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. crossref(new window)

5.
G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.

6.
F. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. crossref(new window)

7.
D. Jerison and A. Sanchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), no. 4, 835–854. crossref(new window)

8.
H. Q. Li, Estimations $L^p$ des operateurs de Schr¨odinger sur les groupes nilpotents, J. Funct. Anal. 161 (1999), no. 1, 152–218. crossref(new window)

9.
N. Lohoue, Estimees de type Hardy-Sobolev sur certaines varietes riemanniennes et les groupes de Lie, J. Funct. Anal. 112 (1993), no. 1, 121–158. crossref(new window)

10.
G. Z. Lu, A Fefferman-Phong type inequality for degenerate vector fields and applications, Panamer. Math. J. 6 (1996), no. 4, 37–57.

11.
Z. W. Shen, $L^p$ estimates for Schrodinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513–546. crossref(new window)

12.
Z. W. Shen, On the Neumann problem for Schrodinger operators in Lipschitz domains, Indiana Univ. Math. J. 43 (1994), no. 1, 143–176. crossref(new window)

13.
S. Sugano, $L^p$ estimates for some Schrodinger operators and a Calderon-Zygmund operator of Schrodinger type, Tokyo J. Math. 30 (2007), no. 1, 179–197. crossref(new window)

14.
J. P. Zhong, Harmonic analysis for some Schr¨odinger type operators, Ph. D. Princeton University, 1993.