JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS
Demir, Cagri; Argac, Nurcan;
  PDF(new window)
 Abstract
Let R be a non-commutative prime ring and I a non-zero left ideal of R. Let U be the left Utumi quotient ring of R and C be the center of U and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that for all x I, then there exists a U such that g(x) = xa for all x R except when (GF(2)) and I[I, I] = 0.
 Keywords
prime rings;derivations;generalized derivations;left Utumi quotient rings;two-sided Martindale quotient ring;differential identities;Engel condition;
 Language
English
 Cited by
1.
Hypercentralizing generalized skew derivations on left ideals in prime rings, Monatshefte für Mathematik, 2014, 173, 3, 315  crossref(new windwow)
2.
A Characterization of Generalized Derivations on Prime Rings, Communications in Algebra, 2016, 44, 8, 3201  crossref(new windwow)
 References
1.
E. Albas, N. Argac, and V. De Filippis, Generalized derivations with Engel conditions on one-sided ideals, Comm. Algebra 36 (2008), no. 6, 2063-2071. crossref(new window)

2.
N. Argac, L. Carini, and V. De Filippis, An Engel condition with generalized derivations on Lie ideals, Taiwanese J. Math. 12 (2008), no. 2, 419-433.

3.
N. Argac, V. De Filippis, and H. G. Inceboz, Generalized derivations with power central values on multilinear poynomials on right ideals, to appear in Rendiconti di Padova,

4.
K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc., New York, 1996.

5.
M. Bresar, On generalized biderivations and related maps, J. Algebra 172 (1995), no. 3, 764-786. crossref(new window)

6.
C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728. crossref(new window)

7.
J. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49-63. crossref(new window)

8.
C. Faith and Y. Utumi, On a new proof of Litoff’s theorem, Acta Math. Acad. Sci. Hungar 14 (1963), 369-371. crossref(new window)

9.
B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166. crossref(new window)

10.
V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.

11.
C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (1997), no. 2, 339-345. crossref(new window)

12.
T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.

13.
T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057-4073. crossref(new window)

14.
T. K. Lee, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc. 347 (1995), no. 8, 3159-3165. crossref(new window)

15.
T. K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38 (1995), no. 4, 445-449. crossref(new window)

16.
T. K. Lee, Derivations with Engel conditions on polynomials, Algebra Colloq. 5 (1998), no. 1, 13-24.

17.
T. K. Lee and W. K. Shiue, A result on derivations with Engel condition in prime rings, Southeast Asian Bull. Math. 23 (1999), no. 3, 437-446.

18.
T. K. Lee and W. K. Shiue, Identities with generalized derivations, Comm. Algebra 29 (2001), no. 10, 4437-4450. crossref(new window)

19.
P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995), no. 1, 1-5.

20.
W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. crossref(new window)

21.
E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. crossref(new window)