JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LOCAL COHOMOLOGY MODULES WHICH ARE SUPPORTED ONLY AT FINITELY MANY MAXIMAL IDEALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LOCAL COHOMOLOGY MODULES WHICH ARE SUPPORTED ONLY AT FINITELY MANY MAXIMAL IDEALS
Hajikarimi, Alireza;
  PDF(new window)
 Abstract
Let a be an ideal of a commutative Noetherian ring R, M a finitely generated R-module and N a weakly Laskerian R-module. We show that if N has finite dimension d, then consists of finitely many maximal ideals of R. Also, we find the least integer i, such that (M, N) is not consisting of finitely many maximal ideals of R.
 Keywords
associated prime ideals;generalized local cohomology modules;weakly Artinian modules;weakly Laskerian modules;
 Language
English
 Cited by
1.
ON THE WEAK ARTINIANNESS AND MINIMAX GENERALIZED LOCAL COHOMOLOGY MODULES,;

대한수학회보, 2013. vol.50. 6, pp.1855-1861 crossref(new window)
1.
ON THE WEAK ARTINIANNESS AND MINIMAX GENERALIZED LOCAL COHOMOLOGY MODULES, Bulletin of the Korean Mathematical Society, 2013, 50, 6, 1855  crossref(new windwow)
 References
1.
M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra 320 (2008), no. 3, 1275-1287. crossref(new window)

2.
J. Asadollahi, K. Khashyarmanesh, and Sh. Salarian, On the finiteness properties of the generalized local cohomology modules, Comm. Algebra 30 (2002), no. 2, 859-867. crossref(new window)

3.
J. Asadollahi and P. Schenzel, Cofiniteness of generalized local cohomology modules for principal ideals, preprint.

4.
N. Bourbaki, Commutative Algebra, Chapters 1-7, Elements of Mathematics, Springer-Verlag, Berlin, 1998.

5.
M. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press, 1998.

6.
L. Chu and Z. Tang, On the Artinianness of generalized local cohomology, Comm. Algebra 35 (2007), no. 12, 3821-3827. crossref(new window)

7.
N. T. Cuong and N. V. Hoang, Some finite properties of generalized local cohomology modules, East-West J. Math. 7 (2005), no. 2, 107-115.

8.
K. Divaani-Aazar and A. Hajikarimi, Generalized local cohomology modules and homological Gorenstein dimensions, Comm. Algebra, to appear.

9.
K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (2005), no. 3, 655-660. crossref(new window)

10.
J. Herzog, Komplex Auflosungen und Dualitat in der lokalen Algebra, Habilitationsschrift, Universitat Regensburg, 1970.

11.
C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), 93-108, Res. Notes Math., 2, Jones and Bartlett, Boston, MA, 1992.

12.
M. Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra 252 (2002), no. 1, 161-166. crossref(new window)

13.
L. Melkersson, Some applications of a criterion for Artinianness of a module, J. Pure Appl. Algebra 101 (1995), no. 3, 291-303. crossref(new window)

14.
J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diego, 1979.

15.
A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), no. 2-3, 165-176. crossref(new window)