JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A q-ANALOGUE OF THE GENERALIZED FACTORIAL NUMBERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A q-ANALOGUE OF THE GENERALIZED FACTORIAL NUMBERS
Song, Seok-Zun; Cheon, Gi-Sang; Jun, Young-Bae; Beasley, Leroy B.;
  PDF(new window)
 Abstract
In this paper, more generalized q-factorial coefficients are examined by a natural extension of the q-factorial on a sequence of any numbers. This immediately leads to the notions of the extended q-Stirling numbers of both kinds and the extended q-Lah numbers. All results described in this paper may be reduced to well-known results when we set q
 Keywords
q-factorial;q-Stirling numbers;q-Lah numbers;
 Language
English
 Cited by
1.
ON p, q-DIFFERENCE OPERATOR,;;

대한수학회지, 2012. vol.49. 3, pp.537-547 crossref(new window)
1.
On two kinds of q-analogues of generalized Stirling numbers, The Ramanujan Journal, 2016  crossref(new windwow)
 References
1.
G. S. Call and D. J. Vellemam, Pascal’s matrices, Amer. Math. Monthly 100 (1993), no. 4, 372-376. crossref(new window)

2.
L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. crossref(new window)

3.
Ch. A. Charalambides, On the q-differences of the generalized q-factorials, J. Statist. Plann. Inference 54 (1996), no. 1, 31-43. crossref(new window)

4.
Ch. A. Charalambides, Non-central generalized q-factorial coefficients and q-Stirling numbers, Discrete Math. 275 (2004), no. 1-3, 67-85. crossref(new window)

5.
G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl. 329 (2001), no. 1-3, 49-59. crossref(new window)

6.
L. Comtet, Nombres de Stirling generaux et fonctions symetriques, C. R. Acad. Sci. Paris Ser. A-B 275 (1972), A747-A750.

7.
L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.

8.
H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J. 28(1961), 281-289. crossref(new window)

9.
L. C. Hsu, A summation rule using Stirling numbers of the second kind, Fibonacci Quart. 31 (1993), no. 3, 256-262.

10.
L. C. Hsu and P. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998), no. 3, 366-384. crossref(new window)

11.
C. Jordan, Calculus of Finite Differences, Chelsea Pub. Co., New York, 1950.

12.
M. Koutras, Noncentral Stirling numbers and some applications, Discrete Math. 42 (1982), no. 1, 73-89. crossref(new window)

13.
D. E. Loeb, A generalization of the Stirling numbers, Discrete Math. 103 (1992), no. 3, 259-269. crossref(new window)

14.
A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and p, q-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499. crossref(new window)

15.
S. C. Milne, A q-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978), 89-118. crossref(new window)

16.
H. Oruc and H. K. Akmaz, Symmetric functions and the Vandermonde matrix, J. Comput. Appl. Math. 172 (2004), no. 1, 49-64. crossref(new window)

17.
C. G. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), no. 1-3, 199-218. crossref(new window)