JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE TOPOLOGY OF DIFFEOMORPHISMS OF SYMPLECTIC 4-MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE TOPOLOGY OF DIFFEOMORPHISMS OF SYMPLECTIC 4-MANIFOLDS
Kim, Jin-Hong;
  PDF(new window)
 Abstract
For a closed symplectic 4-manifold X, let (X) be the group of diffeomorphisms of X smoothly isotopic to the identity, and let Symp(X) be the subgroup of (X) consisting of symplectic automorphisms. In this paper we show that for any finitely given collection of positive integers {, , , } and any non-negative integer m, there exists a closed symplectic (or Khler) 4-manifold X with (X) > m such that the homologies of the quotient space (X)/Symp(X) over the rational coefficients are non-trivial for all odd degrees i = - 1, , - 1. The basic idea of this paper is to use the local invariants for symplectic 4-manifolds with contact boundary, which are extended from the invariants of Kronheimer for closed symplectic 4-manifolds, as well as the symplectic compactifications of Stein surfaces of Lisca and Mati.
 Keywords
Seiberg-Witten invariants;symplectic diffeomorphism;symplectic structures;
 Language
English
 Cited by
 References
1.
B. Aebischer et al., Symplectic Geometry, An introduction based on the seminar in Bern, 1992. Progress in Mathematics, 124. Birkhauser Verlag, Basel, 1994.

2.
S. Akbulut and B. Ozbagci, On the topology of compact Stein surfaces, Int. Math. Res. Not. 2002 (2002), no. 15, 769-782. crossref(new window)

3.
S. Bradlow, Vortices in holomorphic line bundles over closed Kahler manifolds, Comm. Math. Phys. 135 (1990), no. 1, 1-17. crossref(new window)

4.
D. Eisenbud and W. Neumann, Three-dimensional Link Theory and Invariants of Plane Curve Singularities, Annals of Mathematics Studies, 110. Princeton University Press, Princeton, NJ, 1985.

5.
Y. Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math. 1 (1990), no. 1, 29-46. crossref(new window)

6.
Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds, Topological methods in modern mathematics (Stony Brook, NY, 1991), 171-193, Publish or Perish, Houston, TX, 1993.

7.
R. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693. crossref(new window)

8.
R. Gompf and A. Stipsicz, 4-manifolds and Kirby Calculus, Graduate Studies in Mathematics, 20. American Mathematical Society, Providence, RI, 1999.

9.
P. Kronheimer, Some non-trivial families of symplectic structures, preprint (1995); available at http://math.harvard.edu/~kronheim.

10.
P. Kronheimer and T. Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997), no. 2, 209-255. crossref(new window)

11.
P. Lisca and G. Matic, Tight contact structures and Seiberg-Witten invariants, Invent. Math. 129 (1997), no. 3, 509-525. crossref(new window)

12.
C. McMullen and C. Taubes, 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999), no. 5-6, 681-696. crossref(new window)

13.
J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. crossref(new window)

14.
T. Mrowka, P. Ozsvath, and B. Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685-791.

15.
D. Ruberman, An obstruction to smooth isotopy in dimension 4, Math. Res. Lett. 5 (1998), no. 6, 743-758. crossref(new window)

16.
D. Ruberman, A polynomial invariant of diffeomorphisms of 4-manifolds, Proceedings of the Kirbyfest (Berkeley, CA, 1998), 473-488 (electronic), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999.

17.
D. Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants, Geom. Topol. 5 (2001), 895-924. crossref(new window)

18.
N. Saveliev, Fukumoto-Furuta invariants of plumbed homology 3-spheres, Pacific J. Math. 205 (2002), no. 2, 465-490. crossref(new window)

19.
P. Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential Geom. 52 (1999), no. 1, 145-171.

20.
I. Smith, On moduli spaces of symplectic forms, Math. Res. Lett. 7 (2000), no. 5-6, 779-788. crossref(new window)

21.
A. Stipsicz, On Stein fillings of the 3-torus $T^3$, preprint (2001).

22.
C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809-822. crossref(new window)

23.
C. Taubes, More constraints on symplectic forms from Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), no. 1, 9-13. crossref(new window)

24.
C. Taubes, SW ${\Rightarrow}$ Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996), no. 3, 845-918. crossref(new window)

25.
S. Vidussi, Homotopy K3's with several symplectic structures, Geom. Topol. 5 (2001), 267-285. crossref(new window)