JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GORENSTEIN-INJECTORS, GORENSTEIN-FLATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GORENSTEIN-INJECTORS, GORENSTEIN-FLATORS
Gu, Qinqin; Zhu, Xiaosheng; Zhou, Wenping;
  PDF(new window)
 Abstract
Over a ring R, let be a finitely generated projective right R-module. Then we define the G-injector (G-projector) if preservers Gorenstein injective modules (Gorenstein projective modules), the Gflator if preservers Gorenstein flat modules. G-injector (G-flator) and G-injector are characterized focus primarily on the cases where R is a Gorenstein ring, and under this condition we also study the relations between the injector (projector, flator) and the G-injector (G-projector, G-flator). Over any ring we also give the characteristics of G-injector (G-flator) by the Gorenstein injective (Gorenstein flat) dimensions of modules.
 Keywords
Gorenstein-injector;perfect Gorenstein-injector;Gorensteinflator;perfect Gorenstein-flator;
 Language
English
 Cited by
 References
1.
F. W. Anderson, Endomorphism rings of projective modules, Math. Z. 111 (1969), 322-332. crossref(new window)

2.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13. Springer-Verlag, New York-Heidelberg, 1974.

3.
D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), no. 2, 437-445. crossref(new window)

4.
D. Bennis and N. Mahdou, Global Gorenstein dimension, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465. crossref(new window)

5.
E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 203-211.

6.
E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. crossref(new window)

7.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Expositions in Mathematics, 30. Walter de Gruyter & Co., Berlin, 2000.

8.
E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.

9.
H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. crossref(new window)

10.
R. W. Miller, Endomorphism rings of finitely generated projective modules, Pacific J. Math. 47 (1973), 199-220. crossref(new window)

11.
K. Morita, Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1965), 40-71.

12.
J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.

13.
J. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, 1634. Springer-Verlag, Berlin, 1996.