JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LIE BIALGEBRAS ARISING FROM POISSON BIALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LIE BIALGEBRAS ARISING FROM POISSON BIALGEBRAS
Oh, Sei-Qwon; Cho, Eun-Hee;
  PDF(new window)
 Abstract
It gives a method to obtain a natural Lie bialgebra from a Poisson bialgebra by an algebraic point of view. Let g be a coboundary Lie bialgebra associated to a Poission Lie group G. As an application, we obtain a Lie bialgebra from a sub-Poisson bialgebra of the restricted dual of the universal enveloping algebra U(g).
 Keywords
Lie bialgebra;Poisson bialgebra;
 Language
English
 Cited by
1.
Poisson Hopf algebra related to a twisted quantum group, Communications in Algebra, 2017, 45, 1, 76  crossref(new windwow)
 References
1.
K. A. Brown and K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics. CRM Barcelona. Birkhauser Verlag, Basel, 2002.

2.
V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.

3.
T. J. Hodges and T. Levasseur, Primitive ideals of $C_q$[SL(3)], Comm. Math. Phys. 156 (1993), no. 3, 581–605.

4.
T. J. Hodges, T. Levasseur, and M. Toro, Algebraic structure of multiparameter quantum groups, Adv. Math. 126 (1997), no. 1, 52-92. crossref(new window)

5.
J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002.

6.
J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 21, Springer-Verlag Inc., thirding printing, 1987.

7.
J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, 1996.

8.
A. Joseph, Quantum Groups and Their Primitive Ideals, A series of modern surveys in mathematics, vol. 3. Folge.Band 29, Springer-Verlag, Berlin, 1995.

9.
L. I. Korogodski and Y. S. Soibelman, Algebras of Functions on Quantum Groups. Part I., Mathematical Surveys and Monographs, 56. American Mathematical Society, Providence, RI, 1998.

10.
L. A. Lambe and D. E. Radford, Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: an algebraic approach, Mathematics and its Applications, 423. Kluwer Academic Publishers, Dordrecht, 1997.