JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BOUNDARY VALUE PROBLEMS FOR THE STATIONARY NORDSTRÖM-VLASOV SYSTEM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BOUNDARY VALUE PROBLEMS FOR THE STATIONARY NORDSTRÖM-VLASOV SYSTEM
Bostan, Mihai;
  PDF(new window)
 Abstract
We study the existence of weak solution for the stationary Nordstrm-Vlasov equations in a bounded domain. The proof follows by fixed point method. The asymptotic behavior for large light speed is analyzed as well. We justify the convergence towards the stationary Vlasov-Poisson model for stellar dynamics.
 Keywords
Nordstrm equation;Vlasov equation;Poisson equation;weak/mild solutions;
 Language
English
 Cited by
 References
1.
N. B. Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Methods Appl. Sci. 17 (1994), no. 6, 451-476. crossref(new window)

2.
H. Andreasson, The Einstein-Vlasov system/kinetic theory, Living Rev. Relativ. 5 (2002), 2002-7, 33 pp.

3.
A. Arsen'ev, Global existence of a weak solution of the Vlasov system of equations, U.R.S.S. Comp. and Math. Phys. 15 (1975), 131-143. crossref(new window)

4.
C. Bardos, Problemes aux limites pour les equations aux derivees partielles du premier ordre a coefficients reels; theoremes d'approximation; application a l'equation de transport, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 185-233.

5.
J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 (1986), no. 2, 159-183. crossref(new window)

6.
J. Batt, P. Morrison, and G. Rein, Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions, Arch. Rational Mech. Anal. 130 (1995), no. 2, 163-182.

7.
M. Bostan, Boundary value problem for the three dimensional time periodic Vlasov-Maxwell system, Commun. Math. Sci. 3 (2005), no. 4, 621-663. crossref(new window)

8.
M. Bostan, Asymptotic behavior of weak solutions for the relativistic Vlasov-Maxwell equations with large light speed, J. Differential Equations 227 (2006), no. 2, 444-498. crossref(new window)

9.
M. Bostan, Stationary solutions for the one dimensional Nordstrom-Vlasov system, Preprint 22 (2006), Universite de Franche-Comte.

10.
F. Bouchut, F. Golse, and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal. 170 (2003), no. 1, 1-15. crossref(new window)

11.
S. Calogero, Spherically symmetric steady states of galactic dynamics in scalar gravity, Classical Quantum Gravity 20 (2003), no. 9, 1729–1741.

12.
S. Calogero and H. Lee, The non-relativistic limit of the Nordstrom-Vlasov system, Commun. Math. Sci. 2 (2004), no. 1, 19-34. crossref(new window)

13.
S. Calogero and G. Rein, On classical solutions of the Nordstrom-Vlasov system, Comm. Partial Differential Equations 28 (2003), no. 11-12, 1863-1885. crossref(new window)

14.
S. Calogero and G. Rein, Global weak solutions to the Nordstrom-Vlasov system, J. Differential Equations 204 (2004), no. 2, 323-338. crossref(new window)

15.
P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci. 8 (1986), no. 4, 533-558. crossref(new window)

16.
R. J. Diperna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), no. 6, 729-757. crossref(new window)

17.
R. J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511-547. crossref(new window)

18.
J. Dolbeault, O. Sanchez, and J. Soler, Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case, Arch. Ration. Mech. Anal. 171 (2004), no. 3, 301-327. crossref(new window)

19.
R. Glassey and J. Schaeffer, On the “one and one-half dimensional” relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci. 13 (1990), no. 2, 169-179. crossref(new window)

20.
R. Glassey and J. Schaeffer, The “two and one-half-dimensional” relativistic Vlasov Maxwell system, Comm. Math. Phys. 185 (1997), no. 2, 257-284. crossref(new window)

21.
R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), no. 1, 59-90.

22.
C. Greengard and P.-A. Raviart, A boundary-value problem for the stationary Vlasov-Poisson equations: the plane diode, Comm. Pure Appl. Math. 43 (1990), no. 4, 473-507. crossref(new window)

23.
Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys. 154 (1993), no. 2, 245-263. crossref(new window)

24.
S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal. 1 (2002), no. 1, 103-125.

25.
H. Lee, The classical limit of the relativistic Vlasov-Maxwell system in two space dimensions, Math. Methods Appl. Sci. 27 (2004), no. 3, 249-287. crossref(new window)

26.
P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), no. 2, 415-430. crossref(new window)

27.
S. Mischler, On the trace problem for solutions of the Vlasov equation, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1415-1443. crossref(new window)

28.
G. Nordstrom, Zur Theorie der Gravitation vom Standpunkt des Relativitatsprinzips, Ann. Phys. 347 (1913), no. 13, 533-554. crossref(new window)

29.
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations 95 (1992), no. 2, 281-303. crossref(new window)

30.
F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system, Forum Math. 4 (1992), no. 5, 499-527. crossref(new window)

31.
G. Rein, Existence of stationary, collisionless plasmas in bounded domains, Math. Methods Appl. Sci. 15 (1992), no. 5, 365-374. crossref(new window)

32.
G. Rein, Non-linear stability for the Vlasov-Poisson system-the energy-Casimir method, Math. Methods Appl. Sci. 17 (1994), no. 14, 1129-1140. crossref(new window)

33.
G. Rein, Selfgravitating systems in Newtonian theory-the Vlasov-Poisson system, Mathematics of gravitation, Part I (Warsaw, 1996), 179-194, Banach Center Publ., 41, Part I, Polish Acad. Sci., Warsaw, 1997.

34.
G. Rein, Stationary and static stellar dynamic models with axial symmetry, Nonlinear Anal. 41 (2000), no. 3-4, Ser. A: Theory Methods, 313-344. crossref(new window)

35.
G. Rein and A. D. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional, cosmological setting, Arch. Rational Mech. Anal. 126 (1994), no. 2, 183-201. crossref(new window)

36.
A. D. Rendall, An introduction to the Einstein-Vlasov system, Mathematics of gravitation, Part I (Warsaw, 1996), 35-68, Banach Center Publ., 41, Part I, Polish Acad. Sci., Warsaw, 1997.

37.
A. D. Rendall, The Einstein-Vlasov system, The Einstein equations and the large scale behavior of gravitational fields, 231-250, Birkhauser, Basel, 2004.

38.
J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys. 104 (1986), no. 3, 403-421. crossref(new window)

39.
J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1313-1335. crossref(new window)