JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NONBIJECTIVE IDEMPOTENTS PRESERVERS OVER SEMIRINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NONBIJECTIVE IDEMPOTENTS PRESERVERS OVER SEMIRINGS
Orel, Marko;
  PDF(new window)
 Abstract
We classify linear maps which preserve idempotents on matrices over some classes of semirings. Our results include many known semirings like the semiring of all nonnegative integers, the semiring of all nonnegative reals, any unital commutative ring, which is zero divisor free and of characteristic not two (not necessarily a principal ideal domain), and the ring of integers modulo m, where m is a product of distinct odd primes.
 Keywords
linear preserver;semiring;idempotent matrix;
 Language
English
 Cited by
1.
Onn×nmatrices over a finite distributive lattice, Linear and Multilinear Algebra, 2012, 60, 2, 131  crossref(new windwow)
2.
On linear operators strongly preserving invariants of Boolean matrices, Czechoslovak Mathematical Journal, 2012, 62, 1, 169  crossref(new windwow)
3.
Idempotent matrices over antirings, Linear Algebra and its Applications, 2009, 431, 5-7, 823  crossref(new windwow)
4.
On Decompositions of Matrices over Distributive Lattices, Journal of Applied Mathematics, 2014, 2014, 1  crossref(new windwow)
5.
The Invertible Linear Operator Preserving {1,2}-Inverses of Matrices over Semirings, Pure Mathematics, 2015, 05, 01, 8  crossref(new windwow)
 References
1.
L. B. Beasley and N. J. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7-20. crossref(new window)

2.
L. B. Beasley and N. J. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229. crossref(new window)

3.
C.-G. Cao and X. Zhang, Linear preservers between matrix modules over connected commutative rings, Linear Algebra Appl. 397 (2005), 355-366. crossref(new window)

4.
J.-T. Chan, C.-K. Li, and N.-S. Sze, Mappings on matrices: invariance of functional values of matrix products, J. Aust. Math. Soc. 81 (2006), no. 2, 165-184. crossref(new window)

5.
G.-H. Chan, M.-H. Lim, and K.-K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80. crossref(new window)

6.
P. M. Cohn, Algebra. Vol. 1, Second edition, John Wiley & Sons, Ltd., Chichester, 1982.

7.
D. Dolzan and P. Oblak, Idempotent matrices over antirings, Linear Multilinear Algebra Appl. 431 (2009), no. 5-7, 823-832. crossref(new window)

8.
J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Pitman Monographs and Surveys in Pure and Applied Mathematics, 54. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.

9.
U. Hebisch and H. J. Weinert, Semirings: algebraic theory and applications in computer science, translated from the 1993 German original. Series in Algebra, 5. World Scientific Publishing Co., Inc., River Edge, NJ, 1998.

10.
N. Jacobson, Lectures in Abstract Algebra. Vol. II. Linear algebra, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953.

11.
S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary Boolean matrices, Linear Multilinear Algebra 33 (1993), no. 3-4, 295-300.

12.
S. Liu, Linear maps preserving idempotence on matrix modules over principal ideal domains, Linear Algebra Appl. 258 (1997), 219-231. crossref(new window)

13.
S.-Z. Song, K.-T. Kang, and L. B. Beasley, Idempotent matrix preservers over Boolean algebras, J. Korean Math. Soc. 44 (2007), no. 1, 169-178. crossref(new window)