JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE NEHARI MANIFOLD APPROACH FOR DIRICHLET PROBLEM INVOLVING THE p(x)-LAPLACIAN EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE NEHARI MANIFOLD APPROACH FOR DIRICHLET PROBLEM INVOLVING THE p(x)-LAPLACIAN EQUATION
Mashiyev, Rabil A.; Ogras, Sezai; Yucedag, Zehra; Avci, Mustafa;
  PDF(new window)
 Abstract
In this paper, using the Nehari manifold approach and some variational techniques, we discuss the multiplicity of positive solutions for the p(x)-Laplacian problems with non-negative weight functions and prove that an elliptic equation has at least two positive solutions.
 Keywords
variable exponent Lebesgue-Sobolev spaces;p(x)-Laplacian;variational methods;Nehari manifold;multiple positive solutions;
 Language
English
 Cited by
1.
Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Variables and Elliptic Equations, 2012, 57, 5, 579  crossref(new windwow)
2.
On a PDE Involving the Variable Exponent Operator with Nonlinear Boundary Conditions, Mediterranean Journal of Mathematics, 2015, 12, 3, 821  crossref(new windwow)
 References
1.
E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. crossref(new window)

2.
G. A. Afrouzi, S. Mahdavi, and Z. Naghizadeh, The Nehari manifold for p-Laplacian equation with Dirichlet boundary condition, Nonlinear Anal. Model. Control 12 (2007), no. 2, 143-155.

3.
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543. crossref(new window)

4.
K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 (2003), no. 2, 481-499. crossref(new window)

5.
O. M. Buhrii and R. A. Mashiyev, Uniqueness of solutions of the parabolic variation inequality with variable exponent of nonlinearity, Nonlinear Anal. 10 (2009), 2325-2331.

6.
J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), no. 2, 604-618. crossref(new window)

7.
L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, Ph. D. thesis, University of Frieburg, Germany, 2002.

8.
D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267-293.

9.
A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004), no. 1, 30-42. crossref(new window)

10.
X. L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005), no. 2, 464-477. crossref(new window)

11.
X. L. Fan, J. S. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}({\Omega})$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. crossref(new window)

12.
X. L. Fan and D. Zhao, On the spaces $L^{p(x)}({\Omega})$ and $W^{m,p(x)}({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. crossref(new window)

13.
X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852. crossref(new window)

14.
X. L. Fan, Q. Zhang, and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2, 306-317. crossref(new window)

15.
T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761-766. crossref(new window)

16.
P. Harjulehto, P. Hasto, M. Koskenoja, and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), no. 3, 205-222. crossref(new window)

17.
P. Hasto, The p(x)-Laplacian and applications, J. Anal. 15 (2007), 53-62.

18.
O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.

19.
R. A. Mashiyev, Some properties of variable Sobolev capacity, Taiwanese J. Math. 12 (2008), no. 3, 671-678.

20.
M. Mihailescu, Existence and multiplicity of solutions for an elliptic equation with p(x)-growth conditions, Glasg. Math. J. 48 (2006), no. 3, 411-418. crossref(new window)

21.
M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625-2641. crossref(new window)

22.
M. Mihailescu and V. Radulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929-2937. crossref(new window)

23.
S. Ogras, R. A. Mashiyev, M. Avci, and Z. Yucedag, Existence of solutions for a class of elliptic systems in $R^N$ involving the (p(x), q(x))-Laplacian, J. Inequal. Appl. 2008 (2008), Art. Id 612938, 16 pp.

24.
M. Ruzicka, Electrorheological Fluids: modeling and mathematical theory, Springer Lecture Notes in Math. Vol. 1748, Springer Verlag, Berlin, Heidelberg, New York, 2000.

25.
N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. crossref(new window)

26.
T. F. Wu, Multiplicity of positive solution of p-Laplacian problems with sign-changing weight functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 9-12, 557-563.

27.
X. Zhang and X. Liu, The local boundedness and Harnack inequality of p(x)-Laplace equation, J. Math. Anal. Appl. 332 (2007), no. 1, 209-218. crossref(new window)

28.
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, (russian) Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710, 877.