JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INCLUSION AND INTERSECTION THEOREMS WITH APPLICATIONS IN EQUILIBRIUM THEORY IN G-CONVEX SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INCLUSION AND INTERSECTION THEOREMS WITH APPLICATIONS IN EQUILIBRIUM THEORY IN G-CONVEX SPACES
Balaj, Mircea; O`Regan, Donal;
  PDF(new window)
 Abstract
In this paper we obtain a very general theorem of -compatibility for three multivalued mappings, one of them from the class . More exactly, we show that given a G-convex space Y, two topological spaces X and Z, a (binary) relation on and three mappings P : X Z, Q : Y Z and (Y,X) satisfying a set of conditions we can find () such that and . Two particular cases of this general result will be then used to establish existence theorems for the solutions of some general equilibrium problems.
 Keywords
G-convex space;the better admissible class;fixed point;equilibrium problems;
 Language
English
 Cited by
1.
An intersection theorem for set-valued mappings, Applications of Mathematics, 2013, 58, 3, 269  crossref(new windwow)
2.
A section theorem with applications to coincidence theorems and minimax inequalities in FWC-spaces, Computers & Mathematics with Applications, 2012, 64, 4, 579  crossref(new windwow)
 References
1.
Q. H. Ansari, W. Oettle, and D. Schlager, A generalization of vectorial equilibria, Math. Methods Oper. Res. 46 (1997), no. 2, 147-152. crossref(new window)

2.
Q. H. Ansari, S. Schaible, and J. C. Yao, System of vector equilibrium problems and its applications, J. Optim. Theory Appl. 107 (2000), no. 3, 547-557. crossref(new window)

3.
M. Balaj, An intersection theorem with applications in minimax theory and equilibrium problem, J. Math. Anal. Appl. 336 (2007), no. 1, 363-371. crossref(new window)

4.
M. Balaj, Coincidence and maximal element theorems and their applications to generalized equilibrium problems and minimax inequalities, Nonlinear Anal. 68 (2008), no. 12, 3962-3971. crossref(new window)

5.
M. Balaj and D. O’Regan, Weak-equilibrium problems in G-convex spaces, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 1, 103-117. crossref(new window)

6.
H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, and J.-V. Llinares, Abstract convexity and fixed points, J. Math. Anal. Appl. 222 (1998), no. 1, 138-150. crossref(new window)

7.
T.-H. Chang and C.-L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203 (1996), no. 1, 224-235. crossref(new window)

8.
X. P. Ding, Genralized KKM type theorems in FC-spaces with applications. I, J. Global Optim. 36 (2006), no. 4, 581-596. crossref(new window)

9.
X. P. Ding, Generalized KKM type theorems in FC-spaces with applications. II, J. Global Optim. 38 (2007), no. 3, 367-385. crossref(new window)

10.
X. P. Ding and T. M. Ding, KKM type theorems and generalized vector equilibrium problems in noncompact FC-spaces, J. Math. Anal. Appl. 331 (2007), no. 2, 1230-1245. crossref(new window)

11.
X. P. Ding and Y. J. Park, Fixed points and generalized vector equilibrium problems in generalized convex spaces, Indian J. Pure Appl. Math. 34 (2003), no. 6, 973-990.

12.
X. P. Ding and Y. J. Park, Generalized vector equilibrium problems in generalized convex spaces, J. Optim. Theory Appl. 120 (2004), no. 2, 327-353. crossref(new window)

13.
M. Fakhar and J. Zafarani, Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions, J. Optim. Theory Appl. 126 (2005), no. 1, 109-124. crossref(new window)

14.
M. Fang and N. Huang, KKM type theorems with applications to generalized vector equilibrium problems in FC-spaces, Nonlinear Anal. 67 (2007), no. 3, 809-817. crossref(new window)

15.
J. Y. Fu, Generalized vector quasi-equilibrium problems, Math. Methods Oper. Res. 52 (2000), no. 1, 57-64. crossref(new window)

16.
M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), no. 1, 46-60. crossref(new window)

17.
L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J. Optim. Theory Appl. 117 (2003), no. 1, 121-137. crossref(new window)

18.
L. J. Lin and H. L. Chen, The study of KKM theorems with applications to vector equilibrium problems with implicit vector variational inequalities problems, J. Global Optim. 32 (2005), no. 1, 135-157. crossref(new window)

19.
L. J. Lin and W. S. Du, Systems of equilibrium problems with applications to generalized Ekeland’s variational principle and systems of semi-infinite problems, J. Global Optim. (2007).

20.
L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123 (2004), no. 1, 105-122. crossref(new window)

21.
L. J. Lin, Z. T. Yu, and G. Kassay, Existence of equilibria for multivalued mappings and its application to vectorial equilibria, J. Optim. Theory Appl. 114 (2002), no. 1, 189-208. crossref(new window)

22.
Z. D. Mitrovic, On scalar equilibrium problem in generalized convex spaces, J. Math. Anal. Appl. 330 (2007), no. 1, 451-461. crossref(new window)

23.
S. Park, Fixed points of the better admissible multimaps, Msath. Sci. Res. Hot-Line 1 (1997), no. 9, 1-6.

24.
S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), no. 3, 493-519.

25.
S. Park, Fixed points of better admissible maps on generalized convex spaces, J. Korean Math. Soc. 37 (2000), no. 6, 885-899.

26.
S. Park, New subclasses of generalized convex spaces, Fixed point theory and applications (Chinju, 1998), 91-98, Nova Sci. Publ., Huntington, NY, 2000.

27.
S. Park, Remarks on fixed point theorems for generalized convex spaces, Fixed point theory and applications (Chinju, 1998), 135-144, Nova Sci. Publ., Huntington, NY, 2000.

28.
S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), no. 6, Ser. A: Theory Methods, 869-879. crossref(new window)

29.
S. Park, Remarks on equilibria for g-monotone maps on generalized convex spaces, J. Math. Anal. Appl. 269 (2002), no. 1, 244-255. crossref(new window)

30.
S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. Seoul National University 18 (1993), 1-21.

31.
N. X. Tan and P. N. Tinh, On the existence of equilibrium points of vector functions, Numer. Funct. Anal. Optim. 19 (1998), no. 1-2, 141-156. crossref(new window)