JOURNAL BROWSE
Search
Advanced SearchSearch Tips
KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS
Han, Sang-Eon;
  PDF(new window)
 Abstract
Let be the Cartesian product of the set of integers and let (, T) and (, ) be the Khalimsky line topology on and the Khalimsky product topology on , respectively. Then for a set , consider the subspace (X, ) induced from (, ). Considering a k-adjacency on (X, ), we call it a (computer topological) space with k-adjacency and use the notation (X, k, ) :
 Keywords
computer topology;digital topology;digital space;KD-(, )-continuity;KD-k-deformation retract;digital homotopy equivalence;KD-(, )-homotopy equivalence;KD-k-homotopic thinning;
 Language
English
 Cited by
1.
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE,;

호남수학학술지, 2010. vol.32. 3, pp.375-387 crossref(new window)
2.
EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY,;

대한수학회보, 2010. vol.47. 5, pp.915-932 crossref(new window)
3.
CATEGORY WHICH IS SUITABLE FOR STUDYING KHALIMSKY TOPOLOGICAL SPACES WITH DIGITAL CONNECTIVITY,;

호남수학학술지, 2011. vol.33. 2, pp.231-246 crossref(new window)
4.
COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY,;;

호남수학학술지, 2012. vol.34. 3, pp.451-465 crossref(new window)
5.
REMARKS ON DIGITAL PRODUCTS WITH NORMAL ADJACENCY RELATIONS,;;

호남수학학술지, 2013. vol.35. 3, pp.515-524 crossref(new window)
6.
STUDY ON TOPOLOGICAL SPACES WITH THE SEMI-T½ SEPARATION AXIOM,;

호남수학학술지, 2013. vol.35. 4, pp.707-716 crossref(new window)
7.
AN EQUIVALENT PROPERTY OF A NORMAL ADJACENCY OF A DIGITAL PRODUCT,;

호남수학학술지, 2014. vol.36. 1, pp.199-215 crossref(new window)
8.
REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY,;

호남수학학술지, 2014. vol.36. 3, pp.519-530 crossref(new window)
9.
UTILITY OF DIGITAL COVERING THEORY,;;

호남수학학술지, 2014. vol.36. 3, pp.695-706 crossref(new window)
10.
COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT,;

호남수학학술지, 2015. vol.37. 1, pp.135-147 crossref(new window)
11.
REMARKS ON HOMOTOPIES ASSOCIATED WITH KHALIMSKY TOPOLOGY,;;

호남수학학술지, 2015. vol.37. 4, pp.577-593 crossref(new window)
12.
FIXED POINT THEOREMS FOR DIGITAL IMAGES,;

호남수학학술지, 2015. vol.37. 4, pp.595-608 crossref(new window)
1.
COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY, Honam Mathematical Journal, 2012, 34, 3, 451  crossref(new windwow)
2.
REMARKS ON DIGITAL PRODUCTS WITH NORMAL ADJACENCY RELATIONS, Honam Mathematical Journal, 2013, 35, 3, 515  crossref(new windwow)
3.
A digitization method of subspaces of the Euclidean $$n$$ n D space associated with the Khalimsky adjacency structure, Computational and Applied Mathematics, 2015  crossref(new windwow)
4.
An MA-digitization of Hausdorff spaces by using a connectedness graph of the Marcus–Wyse topology, Discrete Applied Mathematics, 2016  crossref(new windwow)
5.
STUDY ON TOPOLOGICAL SPACES WITH THE SEMI-T½SEPARATION AXIOM, Honam Mathematical Journal, 2013, 35, 4, 707  crossref(new windwow)
6.
Homotopy based on Marcus–Wyse topology and its applications, Topology and its Applications, 2016, 201, 358  crossref(new windwow)
7.
AN EQUIVALENT PROPERTY OF A NORMAL ADJACENCY OF A DIGITAL PRODUCT, Honam Mathematical Journal, 2014, 36, 1, 199  crossref(new windwow)
8.
REMARKS ON HOMOTOPIES ASSOCIATED WITH KHALIMSKY TOPOLOGY, Honam Mathematical Journal, 2015, 37, 4, 577  crossref(new windwow)
9.
Digitizations associated with several types of digital topological approaches, Computational and Applied Mathematics, 2015  crossref(new windwow)
10.
UTILITY OF DIGITAL COVERING THEORY, Honam Mathematical Journal, 2014, 36, 3, 695  crossref(new windwow)
11.
Existence of the Category DTC 2 (K) Equivalent to the Given Category KAC 2, Ukrainian Mathematical Journal, 2016, 67, 8, 1264  crossref(new windwow)
12.
EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY, Bulletin of the Korean Mathematical Society, 2010, 47, 5, 915  crossref(new windwow)
13.
Generalizations of continuity of maps and homeomorphisms for studying 2D digital topological spaces and their applications, Topology and its Applications, 2015, 196, 468  crossref(new windwow)
14.
CATEGORY WHICH IS SUITABLE FOR STUDYING KHALIMSKY TOPOLOGICAL SPACES WITH DIGITAL CONNECTIVITY, Honam Mathematical Journal, 2011, 33, 2, 231  crossref(new windwow)
15.
Homotopy equivalence which is suitable for studying Khalimsky nD spaces, Topology and its Applications, 2012, 159, 7, 1705  crossref(new windwow)
16.
REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY, Honam Mathematical Journal, 2014, 36, 3, 519  crossref(new windwow)
17.
COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT, Honam Mathematical Journal, 2015, 37, 1, 135  crossref(new windwow)
18.
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE, Honam Mathematical Journal, 2010, 32, 3, 375  crossref(new windwow)
19.
Ultra regular covering space and its automorphism group, International Journal of Applied Mathematics and Computer Science, 2010, 20, 4  crossref(new windwow)
20.
Contractibility and fixed point property: the case of Khalimsky topological spaces, Fixed Point Theory and Applications, 2016, 2016, 1  crossref(new windwow)
21.
FIXED POINT THEOREMS FOR DIGITAL IMAGES, Honam Mathematical Journal, 2015, 37, 4, 595  crossref(new windwow)
 References
1.
P. Alexandroff, Diskrete Raume, Mat. Sb. 2 (1937), 501-519. crossref(new window)

2.
R. Ayala, E. Dominguez, A. R. Frances, and A. Quintero, Homotopy in digital spaces, Discrete Appl. Math. 125 (2003), no. 1, 3-24. crossref(new window)

3.
L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839. crossref(new window)

4.
L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), no. 1, 51-62. crossref(new window)

5.
L. Boxer, Properties of digital homotopy, J. Math. Imaging Vision 22 (2005), no. 1, 19-26. crossref(new window)

6.
J. Dontchev and Haruo Maki, Groups of ${\theta}$-generalized homeomorphisms and the digital line, Topology Appl. 95 (1999), no. 2, 113-128. crossref(new window)

7.
G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin-New York, 1980.

8.
S. E. Han, On the classification of the digital images up to a digital homotopy equivalence, The Journal of Computer and Communications Research 10 (2000), 194-207.

9.
S. E. Han, Computer topology and its applications, Honam Math. J. 25 (2003), no. 1, 153-162.

10.
S. E. Han, Comparison between digital continuity and computer continuity, Honam Math. J. 26 (2004), no. 3, 331-339.

11.
S. E. Han, Minimal digital pseudotorus with k-adjacency, k ${\in}$ 6, 18, 26, Honam Math. J. 26 (2004), no. 2, 237-246.

12.
S. E. Han, Algorithm for discriminating digital images with respect to a digital $(k_{0},\;k_{1})$-homeomorphism, Jour. of Applied Mathematics and Computing 18 (2005), no. 1-2, 505-512.

13.
S. E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171 (2005), no. 1-3, 73-91. crossref(new window)

14.
S. E. Han, On the simplicial complex stemmed from a digital graph, Honam Math. J. 27 (2005), no. 1, 115-129.

15.
S. E. Han, Connected sum of digital closed surfaces, Inform. Sci. 176 (2006), no. 3, 332-348. crossref(new window)

16.
S. E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag, Berlin, pp. 214-225 (2006).

17.
S. E. Han, Erratum to: “Non-product property of the digital fundamental group”, Inform. Sci. 176 (2006), no. 2, 215-216. crossref(new window)

18.
S. E. Han, Remarks on digital homotopy equivalence, Honam Math. J. 29 (2007), no. 1, 101-118. crossref(new window)

19.
S. E. Han, Strong k-deformation retract and its applications, J. Korean Math. Soc. 44 (2007), no. 6, 1479-1503. crossref(new window)

20.
S. E. Han, Continuities and homeomorphisms in computer topology and their applications, J. Korean Math. Soc. 45 (2008), no. 4, 923-952. crossref(new window)

21.
S. E. Han, Equivalent $(k_{0},\;k_{1})$-covering and generalized digital lifting, Inform. Sci. 178 (2008), no. 2, 550-561. crossref(new window)

22.
S. E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, J. Math. Imaging Vision 31 (2008), no. 1, 1-16. crossref(new window)

23.
S. E. Han, Map preserving local properties of a digital image, Acta Appl. Math. 104 (2008), no. 2, 177-190. crossref(new window)

24.
S. E. Han, Extension of several continuities in computer topology, Bull. Korean Math. Soc., submitted.

25.
S. E. Han and N. D. Georgiou, On computer topological function space, J. Korean Math. Soc. 46 (2009), no. 4, 841-857. crossref(new window)

26.
S. E. Han and B. G. Park, Digital graph $(k_{0},\;k_{1})$-homotopy equivalence and its applications, http://atlas-conferences.com/c/a/k/b/35.htm (2003).

27.
E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology and its Applications 36 (1991), no. 1, 1-17. crossref(new window)

28.
I.-S. Kim and S. E. Han, Digital covering theory and its applications, Honam Math. J. 30 (2008), no. 4, 589-602. crossref(new window)

29.
I.-S. Kim, S. E. Han, and C. J. Yoo, The almost pasting property of digital continuity, Acta Applicandae Mathematicae 110 (1) (2010), 399-408. crossref(new window)

30.
T. Y. Kong, A digital fundamental group, Computers and Graphics 13 (1989), 159-166. crossref(new window)

31.
T. Y. Kong and A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.

32.
R. Malgouyres, Homotopy in two-dimensional digital images, Theoret. Comput. Sci. 230 (2000), no. 1-2, 221-233. crossref(new window)

33.
E. Melin, Extension of continuous functions in digital spaces with the Khalimsky topology, Topology Appl. 153 (2005), no. 1, 52-65. crossref(new window)

34.
A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (1979), no. 8, 621-630. crossref(new window)

35.
J. Slapal, Digital Jordan curves, Topology Appl. 153 (2006), no. 17, 3255-3264. crossref(new window)