JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON MIXED TWO-TERM EXPONENTIAL SUMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON MIXED TWO-TERM EXPONENTIAL SUMS
Tianping, Zhang;
  PDF(new window)
 Abstract
In this paper, we shall use analytic methods to study the hybrid mean value involving the mixed two-term exponential sums C(m, n, r, ; q), and give several sharp asymptotic formulae.
 Keywords
two-term exponential sums;Gauss sums, hybrid mean value;
 Language
English
 Cited by
 References
1.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York-Heidelberg, 1976.

2.
S. Chowla, On Kloosterman’s sum, Norske Vid. Selsk. Forh. (Trondheim) 40 (1967), 70-72.

3.
T. Cochrane and Z. Zheng, Bounds for certain exponential sums, Asian J. Math. 4 (2000), no. 4, 757-773.

4.
T. Cochrane and Z. Zheng, Upper bounds on a two-term exponential sum, Sci. China Ser. A 44 (2001), no. 8, 1003-1015. crossref(new window)

5.
R. Dabrowski and B. Fisher, A stationary phase formula for exponential sums over $Z/p^mZ$ and applications to GL(3)-Kloosterman sums, Acta Arith. 80 (1997), no. 1, 1-48.

6.
H. Davenport, Multiplicative Number Theory, Springer-Verlag, New York-Berlin, 1980.

7.
H. Darvenport and H. Heibronn, On an exponential sum, Proc. London Math. Soc. 41 (1936), 449-453. crossref(new window)

8.
L. K. Hua, On exponential sums, Sci. Record (N.S.) 1 (1957), 1-4.

9.
L. K. Hua, Introduction to Number Theory, Science Press, Beijing, 1979.

10.
H. Liu and W. Zhang, On the hybrid mean value of Gauss sums and generalized Bernoulli numbers, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 6, 113-115. crossref(new window)

11.
H. Liu and W. Zhang, Hybrid mean value of generalized Bernoulli numbers, general Kloosterman sums and Gauss sums, J. Korean Math. Soc. 44 (2007), no. 1, 11-24. crossref(new window)

12.
H. Liu and X. Zhang, On the mean value of $\frac{L^'}{L}(1,\chi)$, J. Math. Anal. Appl. 320 (2006), no. 2, 562-577. crossref(new window)

13.
J. H. Loxton and R. A. Smith, On Hua’s estimate for exponential sums, J. London Math. Soc. (2) 26 (1982), no. 1, 15-20.

14.
J. H. Loxton and R. C. Vaughan, The estimate for complete exponential sums, Canada Math. Bull. 26 (1995), no. 4, 442-454.

15.
A. V. Malyshev, A generalization of Kloosterman sums and their estimates, Vestnik Leningrad. Univ. 15 (1960), no. 13, 59-75.

16.
C. L. Siegel, Uber die Classenzahl quadratischer Zahlkorper, Acta Arith. 1 (1935), 83-86.

17.
R. A. Smith, Estimates for exponential sums, Proc. Amer. Math. Soc. 79 (1980), no. 3, 365-368. crossref(new window)

18.
A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 204-207. crossref(new window)

19.
Z. Xu, T. Zhang, and W. Zhang, On the mean value of the two-term exponential sums with Dirichlet characters, J. Number Theory 123 (2007), no. 2, 352-362. crossref(new window)

20.
Y. Ye, Estimation of exponential sums of polynomials of higher degrees. II, Acta Arith. 93 (2000), no. 3, 221-235.

21.
W. Zhang, On a Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 267 (2002), no. 1, 89-96. crossref(new window)

22.
W. Zhang, On the general Kloosterman sum and its fourth power mean, J. Number Theory 104 (2004), no. 1, 156-161. crossref(new window)

23.
W. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Appl. Math. 35 (2004), no. 2, 237-242. crossref(new window)

24.
W. Zhang, Y. Yi, and X. He, On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, J. Number Theory 84 (2000), no. 2, 199-213. crossref(new window)