JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EIGENVALUE PROBLEM OF BIHARMONIC EQUATION WITH HARDY POTENTIAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EIGENVALUE PROBLEM OF BIHARMONIC EQUATION WITH HARDY POTENTIAL
Yao, Yangxin; He, Shaotong; Su, Qingtang;
  PDF(new window)
 Abstract
In this paper, we consider the eigenvalue problem of biharmonic equation with Hardy potential. We improve the results of references by introducing a new Hilbert space.
 Keywords
biharmonic equations;Hardy type inequality;maximum principle;
 Language
English
 Cited by
 References
1.
R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.

2.
Adimurthi, M. Grossi, and S. Santra, Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem, J. Funct. Anal. 240 (2006), no. 1, 36-83. crossref(new window)

3.
I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. crossref(new window)

4.
S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal. 192 (2002), no. 1, 186-233. crossref(new window)

5.
F. Gazzola, H. C. Grunau, and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2149-2168. crossref(new window)

6.
A. Tertikas and N. B. Zographopolous, Best constants in the Hardy-Rellich inequalities and related improvements, Adv. Math. 209 (2007), no. 2, 407-459. crossref(new window)

7.
M. Willem, Minimax Theorems, Birkhauser Boston, Inc., Boston, MA, 1996.

8.
Y. X. Yao, Y. T. Shen, and Z. H. Chen, Biharmonic equation and an improved Hardy inequality, Acta Math. Appl. Sin. Engl. Ser. 20 (2004), no. 3, 433-440. crossref(new window)