JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ERROR ANALYSIS ASSOCIATED WITH UNIFORM HERMITE INTERPOLATIONS OF BANDLIMITED FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ERROR ANALYSIS ASSOCIATED WITH UNIFORM HERMITE INTERPOLATIONS OF BANDLIMITED FUNCTIONS
Annaby, Mahmoud H.; Asharabi, Rashad M.;
  PDF(new window)
 Abstract
We derive estimates for the truncation, amplitude and jitter type errors associated with Hermite-type interpolations at equidistant nodes of functions in Paley-Wiener spaces. We give pointwise and uniform estimates. Some examples and comparisons which indicate that applying Hermite interpolations would improve the methods that use the classical sampling theorem are given.
 Keywords
Hermite interpolations;derivative sampling theorem, truncation;amplitude and jitter errors;
 Language
English
 Cited by
1.
Approximation of Eigenvalues of Sturm-Liouville Problems by Using Hermite Interpolation, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
2.
The Hermite interpolation approach for computing eigenvalues of Dirac systems, Mathematical and Computer Modelling, 2013, 57, 9-10, 2459  crossref(new windwow)
3.
A Modification of Hermite Sampling with a Gaussian Multiplier, Numerical Functional Analysis and Optimization, 2015, 36, 4, 419  crossref(new windwow)
4.
Truncation error estimates for generalized Hermite sampling, Numerical Algorithms, 2016  crossref(new windwow)
5.
Computing Eigenvalues of Discontinuous Sturm-Liouville Problems with Eigenparameter in All Boundary Conditions Using Hermite Approximation, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
6.
Computation of eigenvalues of discontinuous dirac system using Hermite interpolation technique, Advances in Difference Equations, 2012, 2012, 1, 59  crossref(new windwow)
7.
Generalized sinc-Gaussian sampling involving derivatives, Numerical Algorithms, 2016  crossref(new windwow)
8.
Computing eigenvalues and Hermite interpolation for Dirac systems with eigenparameter in boundary conditions, Boundary Value Problems, 2013, 2013, 1, 36  crossref(new windwow)
9.
Computing eigenvalues of Sturm–Liouville problems by Hermite interpolations, Numerical Algorithms, 2012, 60, 3, 355  crossref(new windwow)
 References
1.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1972.

2.
H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373-389. crossref(new window)

3.
M. H. Annaby and R. M. Asharabi, Truncation, amplitude and jitter errors on R for sampling series derivatives, Submitted.

4.
M. H. Annaby and R. M. Asharabi, Approximating eigenvalues of discontinuous problems by sampling theorems, J. Numer. Math. 16 (2008), no. 3, 163-183. crossref(new window)

5.
M. H. Annaby and R. M. Asharabi, On sinc-based method in computing eigenvalues of boundary-value problems, SIAM J. Numer. Anal. 46 (2008), no. 2, 671-690. crossref(new window)

6.
M. H. Annaby and M. M. Tharwat, On computing eigenvalues of second-order linear pencils, IMA J. Numer. Anal. 27 (2007), no. 2, 366-380. crossref(new window)

7.
R. P. Boas, Entire Functions, Academic Press, New York, 1954.

8.
A. Boumenir and B. Chanane, Eigenvalues of S-L systems using sampling theory, Appl. Anal. 62 (1996), no. 3-4, 323-334. crossref(new window)

9.
J. L. Brown, Jr., Bounds for truncation error in sampling expansions of band-limited signals, IEEE Trans. Information Theory IT-15 (1969), 440-444.

10.
P. L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition 3 (1983), no. 1, 185-212.

11.
P. L. Butzer, W. Engels, and U. Scheben, Magnitude of the truncation error in sampling expansions of band-limited signals, IEEE Trans. Acoust. Speech Signal Process ASSP-30 (1982), 906-912.

12.
P. L. Butzer, J. R. Higgins, and R. L. Stens, Sampling theory of signal analysis, Development of mathematics 1950-2000, 193-234, Birkhauser, Basel, 2000.

13.
P. L. Butzer, G. Schmeisser, and R. L. Stens, An introduction to sampling analysis, Nonuniform sampling, 17-121, Inf. Technol. Transm. Process. Storage, Kluwer/Plenum, New York, 2001.

14.
P. L. Butzer and W. Splettstosser, On quantization, truncation and jitter errors in the sampling theorem and its generalizations, Signal Process. 2 (1980), no. 2, 101-112. crossref(new window)

15.
P. L. Butzer, W. Splettstosser, and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein. 90 (1988), no. 1, 1-70.

16.
K. Chandrasekharan, Classical Fourier Transforms, Springer-Verlag, Berlin, 1989.

17.
G. R. Grozev and Q. I. Rahman, Reconstruction of entire functions from irregularly spaced sample points, Canad. J. Math. 48 (1996), no. 4, 777-793. crossref(new window)

18.
J. R. Higgins, Sampling Theory in Fourier and Signal Analysis Foundations, Oxford University Press, Oxford, 1996.

19.
J. R. Higgins, G. Schmeisser, and J. J. Voss, The sampling theorem and several equivalent results in analysis, J. Comput. Anal. Appl. 2 (2000), no. 4, 333-371.

20.
G. Hinsen, Irregular sampling of bandlimited $L^p-functions$, J. Approx. Theory 72 (1993), no. 3, 346-364. crossref(new window)

21.
D. Jagerman, Bounds for truncation error of the sampling expansion, SIAM J. Appl. Math. 14 (1966), 714-723. crossref(new window)

22.
D. Jagerman and L. Fogel, Some general aspects of the sampling theorem, IRE Trans. Inform. Theory 2 (1956), 139-146. crossref(new window)

23.
X. M. Li, Uniform bounds for sampling expansions, J. Approx. Theory 93 (1998), no. 1, 100-113. crossref(new window)

24.
J. Lund and K. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992.

25.
H. Minc and L. Sathre, Some inequalities involving $(r!)^{1/r}$, Proc. Edinburgh Math. Soc. (2) 14 (1964/1965), 41-46. crossref(new window)

26.
R. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ 19, 1934.

27.
H. S. Piper, Jr., Bounds for truncation error in sampling expansios of finite energy band-limited signals, IEEE Trans. Inform. Theory IT-21 (1975), 482-485.

28.
W. Splettstosser, R. L. Stens, and G. Wilmes, On approximation by the interpolating series of G. Valiron, Funct. Approx. Comment. Math. 11 (1981), 39-56.

29.
F. Stenger, Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Rev. 23 (1981), no. 2, 165-224. crossref(new window)

30.
F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, Berlin, 1993.

31.
J. J. Voss, Irregulares Abtasten: Fehleranalyse, Anwendungen und Erweiterungen, Ph. D. thesis, Erlangen, 1999.

32.
K. Yao and J. B. Thomas, On truncation error bounds for sampling representations of band-limited signals, IEEE Trans. Aerospace Electronic Syst. AES-2 (1966), 640-647. crossref(new window)