JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SLANT HELICES IN MINKOWSKI SPACE E13
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SLANT HELICES IN MINKOWSKI SPACE E13
Ali, Ahmad T.; Lopez, Rafael;
  PDF(new window)
 Abstract
We consider a curve = (s) in Minkowski 3-space and denote by {T, N, B} the Frenet frame of . We say that is a slant helix if there exists a fixed direction U of such that the function is constant. In this work we give characterizations of slant helices in terms of the curvature and torsion of . Finally, we discuss the tangent and binormal indicatrices of slant curves, proving that they are helices in .
 Keywords
Minkowski 3-space;Frenet equations;slant helix;
 Language
English
 Cited by
1.
NOTE ON NULL HELICES IN $\mathbb{E}_1^3$,;;

대한수학회보, 2013. vol.50. 3, pp.885-899 crossref(new window)
2.
POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE,;;

호남수학학술지, 2014. vol.36. 2, pp.233-251 crossref(new window)
1.
The Fermi-Walker Derivative on the Spherical Indicatrix of Spacelike Curve in Minkowski 3-Space, Advances in Applied Clifford Algebras, 2016, 26, 2, 625  crossref(new windwow)
2.
New Representations of Spherical Indicatricies of Bertrand Curves in Minkowski 3-Space, Geometry, 2015, 2015, 1  crossref(new windwow)
3.
NOTE ON NULL HELICES IN $\mathbb{E}_1^3$, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 885  crossref(new windwow)
4.
Some associated curves of Frenet non-lightlike curves in, Journal of Mathematical Analysis and Applications, 2012, 394, 2, 712  crossref(new windwow)
5.
SURFACES IN 𝔼3MAKING CONSTANT ANGLE WITH KILLING VECTOR FIELDS, International Journal of Mathematics, 2012, 23, 06, 1250023  crossref(new windwow)
6.
Contributions to differential geometry of isotropic curves in the complex space C3 – II, Journal of Mathematical Analysis and Applications, 2016, 440, 2, 561  crossref(new windwow)
7.
Magnetic Curves in Three-Dimensional Quasi-Para-Sasakian Geometry, Mediterranean Journal of Mathematics, 2016, 13, 4, 2087  crossref(new windwow)
8.
POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE, Honam Mathematical Journal, 2014, 36, 2, 233  crossref(new windwow)
9.
Slant helices in three dimensional Lie groups, Applied Mathematics and Computation, 2013, 221, 672  crossref(new windwow)
10.
On Curves ofNk–Slant Helix andNk–Constant Precession in Minkowski 3–Space, Journal of Dynamical Systems and Geometric Theories, 2014, 12, 2, 175  crossref(new windwow)
 References
1.
M. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.

2.
A. Ferrandez, A. Gimenez, and P. Lucas, Null helices in Lorentzian space forms, Internat. J. Modern Phys. A 16 (2001), no. 30, 4845-4863. crossref(new window)

3.
S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28 (2004), no. 2, 153-163.

4.
H. Kocayigit and H. M. Onder, Timelike curves of constant slope in Minkowski space $E_{1}^{4}$, J. Science Techn. Beykent Univ. 1 (2007), 311-318.

5.
W. Kuhnel, Differential Geometry: Curves, Surfaces, Manifolds, Weisbaden: Braunschweig, 1999.

6.
L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), no. 1, 600-607. crossref(new window)

7.
R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, arXiv:0810.3351v1, 2008.

8.
M. Onder, M. Kazaz, H. Kocayigit, and O. Kilic, $B_2$-slant helix in Euclidean 4-space $E_4$, Int. J. Contemp. Math. Sci. 3 (2008), no. 29-32, 1433-1440.

9.
M. Petrovic-Torgasev and E. Sucurovic, W-curves in Minkowski space-time, Novi Sad J. Math. 32 (2002), no. 2, 55-65.

10.
J. Walrave, Curves and surfaces in Minkowski space, Doctoral Thesis, K.U. Leuven, Fac. Sci., Leuven, 1995.