JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OVERRINGS OF t-COPRIMELY PACKED DOMAINS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OVERRINGS OF t-COPRIMELY PACKED DOMAINS
Kim, Hwan-Koo;
  PDF(new window)
 Abstract
It is well known that for a Krull domain R, the divisor class group of R is a torsion group if and only if every subintersection of R is a ring of quotients. Thus a natural question is that under what conditions, for a non-Krull domain R, every (t-)subintersection (resp., t-linked overring) of R is a ring of quotients or every (t-)subintersection (resp., t-linked overring) of R is at. To address this question, we introduce the notions of *-compact packedness and *-coprime packedness of (an ideal of) an integral domain R for a star operation * of finite character, mainly t or w. We also investigate the t-theoretic analogues of related results in the literature.
 Keywords
t-coprimely packed;t-compactly packed;strong Mori domain;Prfer v-multiplication domain;tQR-property;(t-)flat;
 Language
English
 Cited by
1.
Overrings as Intersections of Localizations of an Integral Domain, Communications in Algebra, 2015, 43, 1, 225  crossref(new windwow)
2.
A note on generalized Krull domains, Journal of Algebra and Its Applications, 2014, 13, 07, 1450029  crossref(new windwow)
 References
1.
D. D. Anderson and D. F. Anderson, Locally factorial integral domains, J. Algebra 90 (1984), no. 1, 265-283. crossref(new window)

2.
G. W. Chang, Strong Mori domains and the ring $D[X]_{N_v}$, J. Pure Appl. Algebra 197 (2005), no. 1-3, 293-304. crossref(new window)

3.
G. W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), no. 1, 309-319. crossref(new window)

4.
G. W. Chang and C. J. Hwang, Covering and intersection conditions for prime ideals, Korean J. Math. 17 (2009), 15-23.

5.
D. E. Dobbs, E. G. Houston, T. G. Lucas, M. Roitman, and M. Zafrullah, On t-linked overrings, Comm. Algebra 20 (1992), no. 5, 1463-1488. crossref(new window)

6.
D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852. crossref(new window)

7.
D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings as intersections of localizations, Proc. Amer. Math. Soc. 109 (1990), no. 3, 637-646.

8.
S. El Baghdadi and S. Gabelli, Ring-theoretic properties of PvMDs, Comm. Algebra 35 (2007), no. 5, 1607-1625. crossref(new window)

9.
V. Erdogdu, Coprimely packed rings, J. Number Theory 28 (1988), no. 1, 1-5. crossref(new window)

10.
V. Erdogdu, The prime avoidance of maximal ideals in commutative rings, Comm. Algebra 23 (1995), no. 3, 863-868. crossref(new window)

11.
V. Erdogdu, Three notes on coprime packedness, J. Pure Appl. Algebra 148 (2000), no. 2, 165-170. crossref(new window)

12.
V. Erdogdu, Coprime packedness and set theoretic complete intersections of ideals in polynomial rings, Proc. Amer. Math. Soc. 132 (2004), no. 12, 3467-3471. crossref(new window)

13.
V. Erdogdu and S. McAdam, Coprimely packed Noetherian polynomial rings, Comm. Algebra 22 (1994), no. 15, 6459-6470. crossref(new window)

14.
M. Fontana, P. Jara, and E. Santos, Prufer $\star$-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), no. 1, 21-50. crossref(new window)

15.
R. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, New York-Heidelberg, 1973.

16.
S. Gabelli, E. G. Houston, and T. G. Lucas, The t#-property for integral domains, J. Pure Appl. Algebra 194 (2004), no. 3, 281-298. crossref(new window)

17.
R. Gilmer, Overrings of Prufer domains, J. Algebra 4 (1966), 331-340. crossref(new window)

18.
R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, 90, Queen's University, Kingston, Ontario, 1992.

19.
R. Gilmer and W. J. Heinzer, Overrings of Prufer domains. II, J. Algebra 7 (1967), 281-302. crossref(new window)

20.
R. Gilmer and J. Ohm, Integral domains with quotient overrings, Math. Ann. 153 (1964), 97-103. crossref(new window)

21.
E. G. Houston, Prime t-ideals in R[X], Commutative ring theory (Fes, 1992), 163-170, Lecture Notes in Pure and Appl. Math., 153, Dekker, New York, 1994.

22.
E. G. Houston and A. Mimouni, On the divisorial spectrum of a Noetherian domain, J. Pure Appl. Algebra 214 (2010), no. 1, 47-52. crossref(new window)

23.
B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), no. 1, 151-170. crossref(new window)

24.
I. Kaplansky, Commutative Rings, Revised edition. The University of Chicago Press, Chicago, Ill.-London, 1974.

25.
D. J. Kwak and Y. S. Park, On t-flat overrings, Chinese J. Math. 23 (1995), no. 1, 17-24.

26.
M. B. Martin and M. Zafrullah, t-linked overrings of Noetherian weakly factorial domains, Proc. Amer. Math. Soc. 115 (1992), 601-604.

27.
J. L. Mott, Integral domains with quotient overrings, Math. Ann. 166 (1966), no. 229-232. crossref(new window)

28.
J. L. Mott and M. Zafrullah, On Prufer v-multiplication domains, Manuscripta Math. 35 (1981), no. 1-2, 1-26. crossref(new window)

29.
S. Oda, Radically principal and almost factorial, Bull. Fac. Sci. Ibaraki Univ. Ser. A No. 26 (1994), 17-24.

30.
J. V. Pakala and T. S. Shores, On compactly packed rings, Pacific J. Math. 97 (1981), no. 1, 197-201. crossref(new window)

31.
N. Popescu, Sur les C. P.-anneaux, C. R. Acad. Sci. Paris Ser. A-B 272 (1971), A1493-A1496.

32.
C. M. Reis and T. M. Viswanathan, A compactness property for prime ideals in Noetherian rings, Proc. Amer. Math. Soc. 25 (1970), 353-356. crossref(new window)

33.
D. E. Rush and L. J. Wallace, Noetherian maximal spectrum and coprimely packed localizations of polynomial rings, Houston J. Math. 28 (2002), no. 3, 437-448.

34.
W. Smith, A covering condition for prime ideals, Proc. Amer. Math. Soc. 30 (1971), 451-452. crossref(new window)

35.
B. Wajnryb and A. Zaks, On the flat overrings of an integral domain, Glasgow Math. J. 12 (1971), 162-165. crossref(new window)

36.
F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. crossref(new window)

37.
F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. crossref(new window)