JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON RIEMANNIAN MANIFOLDS OF CONSTANT NEGATIVE CURVATURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON RIEMANNIAN MANIFOLDS OF CONSTANT NEGATIVE CURVATURE
Mirzaie, Reza;
  PDF(new window)
 Abstract
In this paper, we study the fundamental group and orbits of cohomogeneity two Riemannian manifolds of constant negative curvature.
 Keywords
Riemannian manifold;Lie group;sectional curvature;
 Language
English
 Cited by
1.
Actions without nontrivial singular orbits on Riemannian manifolds of negative curvature, Acta Mathematica Hungarica, 2015, 147, 1, 172  crossref(new windwow)
2.
Topology of orbits and orbit spaces of some product G-manifolds, Manuscripta Mathematica, 2016, 149, 3-4, 297  crossref(new windwow)
 References
1.
A. V. Alekseevsky and D. V. Alekseevsky, G-manifolds with one-dimensional orbit space, Lie groups, their discrete subgroups, and invariant theory, 1-31, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992.

2.
A. V. Alekseevsky and D. V. Alekseevsky, Riemannian G-manifold with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993), no. 3, 197-211.

3.
G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York-London, 1972.

4.
J. Berndt, S. Console, and C. Olmos, Submanifolds and Holonomy, Chapman & Hall/CRC Research Notes in Mathematics, 434. Chapman & Hall/CRC, Boca Raton, FL, 2003.

5.
M. P. do Carmo, Riemannian Geometry, Birkhauser Boston, Inc., Boston, MA, 1992.

6.
A. J. Di Scala and C. Olmos, The geometry of homogeneous submanifolds of hyperbolic space, Math. Z. 237 (2001), no. 1, 199-209. crossref(new window)

7.
P. Eberlein, Geodesic follows in manifolds of nonpositive curvature, http://www.math.unc.edu/faculty/pbe/ams.

8.
S. Kobayashi, Homogeneous Riemannian manifolds of negative curvature, Tohoku Math. J. (2) 14 (1962), 413-415. crossref(new window)

9.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Vol II, Interscience Publishers John Wiley & Sons, Inc., New York, 1963, 1969.

10.
P. W. Michor, Isomrtric actions of Lie groups and invariants, Lecture course at the university of Vienna, 1996/1997, http://www.mat.univie.ac.at/~michor/tgbook.ps.

11.
R. Mirzaie, Cohomogeneity two actions on flat Riemannian manifolds, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 9, 1587-1592. crossref(new window)

12.
R. Mirzaie and S. M. B. Kashani, On cohomogeneity one flat Riemannian manifolds, Glasg. Math. J. 44 (2002), no. 2, 185-190.

13.
B. O'Neil, Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics, 103. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.

14.
E. Podesta and A. Spiro, Some topological properties of cohomogeneity one manifolds with negative curvature, Ann. Global Anal. Geom. 14 (1996), no. 1, 69-79. crossref(new window)

15.
C. Searle, Cohomogeneity and positive curvature in low dimensions, Math. Z. 214 (1993), no. 3, 491-498. crossref(new window)

16.
J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.

17.
J. A. Wolf, Homogeneity and bounded isometries in manifolds of negative curvature, Illinois J. Math. 8 (1964), 14-18.