JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REMARK ON H-CONTACT UNIT TANGENT SPHERE BUNDLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A REMARK ON H-CONTACT UNIT TANGENT SPHERE BUNDLES
Chun, Sun-Hyang; Pak, Hong-Kyung; Park, Jeong-Hyeong; Sekigawa, Kouei;
  PDF(new window)
 Abstract
We shall give some curvature conditions for the unit tangent sphere bundle of an n( 4)-dimensional Riemannian manifold to be H-contact. Furthermore, we provide an example illustrating Main Theorem.
 Keywords
unit tangent sphere bundle;H-contact manifold;
 Language
English
 Cited by
1.
H-contact unit tangent sphere bundles of Riemannian manifolds, Differential Geometry and its Applications, 2016, 49, 301  crossref(new windwow)
 References
1.
A. L. Besse, Manifolds All of Whose Geodesics are Closed, Springer-Verlag, Berlin-New York, 1978.

2.
D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, Inc., Boston, MA, 2002.

3.
E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), no. 1, 77-93. crossref(new window)

4.
E. Boeckx and L. Vanhecke, Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51(126) (2001), no. 3, 523-544. crossref(new window)

5.
G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky Mountain J. Math. 37 (2007), no. 5, 1435-1458. crossref(new window)

6.
P. Carpenter, A. Gray, and T. J. Willmore, The curvature of Einstein symmetric spaces, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 129, 45-64. crossref(new window)

7.
Y. D. Chai, S. H. Chun, J. H. Park, and K. Sekigawa, Remarks of Einstein unit tangent bundles, Monatsh. Math. 155 (2008), no. 1, 31-42. crossref(new window)

8.
S. H. Chun, J. H. Park, and K. Sekigawa, H-contact unit tangent sphere bundles of Einstein manifolds, Quart. J. Math., (to appear), DOI:10.1093/qmath/hap025. crossref(new window)

9.
P. Nurowski and M. Pruzanowski, A four-dimensional example of a Ricci flat metric admitting almost-Kahler non-Kahler structure, Classical Quantum Gravity 16 (1999), no. 3, L9-L13. crossref(new window)

10.
T. Oguro, K. Sekigawa, and A. Yamada, Four-dimensional almost Kahler Einstein and weakly *-Einstein manifolds, Yokohama Math. J. 47 (1999), no. 1, 75-92.

11.
J. H. Park and K. Sekigawa, When are the tangent sphere bundles of a Riemannian manifold $\eta$-Einstein?, Ann. Global Anal. Geom. 36 (2009), no. 3, 275-284. crossref(new window)

12.
J. H. Park and K. Sekigawa, Notes on tangent sphere bundles of constant radii, J. Korean Math. Soc. 46 (2009), no. 6, 1255-1265. crossref(new window)

13.
D. Perrone, Contact metric manifolds whose characteristic vector eld is a harmonic vector eld, Differential Geom. Appl. 20 (2004), no. 3, 367-378. crossref(new window)

14.
C. M. Wood, On the energy of a unit vector eld, Geom. Dedicata 64 (1997), no. 3, 319-330. crossref(new window)