JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME NEW BONNESEN-STYLE INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME NEW BONNESEN-STYLE INEQUALITIES
Zhou, Jiazu; Xia, Yunwei; Zeng, Chunna;
  PDF(new window)
 Abstract
By evaluating the containment measure of one domain to contain another, we will derive some new Bonnesen-type inequalities (Theorem 2) via the method of integral geometry. We obtain Ren`s sufficient condition for one domain to contain another domain (Theorem 4). We also obtain some new geometric inequalities. Finally we give a simplified proof of the Bottema`s result.
 Keywords
the isoperimetric inequality;kinematic formula;containment measure;convex domain;the Bonnesen-style inequality;
 Language
English
 Cited by
1.
ON THE ISOPERIMETRIC DEFICIT UPPER LIMIT,;;;

대한수학회보, 2013. vol.50. 1, pp.175-184 crossref(new window)
1.
Bonnesen-style symmetric mixed inequalities, Journal of Inequalities and Applications, 2016, 2016, 1  crossref(new windwow)
2.
On containment measure and the mixed isoperimetric inequality, Journal of Inequalities and Applications, 2013, 2013, 1, 540  crossref(new windwow)
3.
Reverse Bonnesen style inequalities in a surface $$\mathbb{X}_\varepsilon ^2$$ of constant curvature, Science China Mathematics, 2013, 56, 6, 1145  crossref(new windwow)
4.
Some Bonnesen-style inequalities for higher dimensions, Acta Mathematica Sinica, English Series, 2012, 28, 12, 2561  crossref(new windwow)
5.
The Bonnesen isoperimetric inequality in a surface of constant curvature, Science China Mathematics, 2012, 55, 9, 1913  crossref(new windwow)
6.
ON THE ISOPERIMETRIC DEFICIT UPPER LIMIT, Bulletin of the Korean Mathematical Society, 2013, 50, 1, 175  crossref(new windwow)
 References
1.
T. F. Banchoff and W. F. Pohl, A generalization of the isoperimetric inequality, J. Differential Geometry 6 (1971/72), 175-192.

2.
J. Bokowski and E. Heil, Integral representations of quermassintegrals and Bonnesen- style inequalities, Arch. Math. (Basel) 47 (1986), no. 1, 79-89. crossref(new window)

3.
T. Bonnesen, Les problems des isoperimetres et des isepiphanes, Paris, 1929.

4.
T. Bonnesen and W. Fenchel, Theorie der konvexen Korper, Springer-Verlag, Berlin- New York, 1974.

5.
O. Bottema, Eine obere Grenze fur das isoperimetrische Dezit ebener Kurven, Nederl. Akad. Wetensch. Proc. A66 (1933), 442-446.

6.
Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, Heidelberg, 1988.

7.
C. Croke, A sharp four-dimensional isoperimetric inequality, Comment. Math. Helv. 59 (1984), no. 2, 187-192. crossref(new window)

8.
V. Diskant, A generalization of Bonnesen's inequalities, Dokl. Akad. Nauk SSSR 213 (1973), 519-521.

9.
K. Enomoto, A generalization of the isoperimetric inequality on $S^{2}$ and flat tori in $S^{3}$, Proc. Amer. Math. Soc. 120 (1994), no. 2, 553-558.

10.
E. Grinberg, D. Ren, and J. Zhou, The symetric isoperimetric deficit and the contain- ment problem in a plan of constant curvature, preprint.

11.
E. Grinberg, Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies, Math. Ann. 291 (1991), no. 1, 75-86. crossref(new window)

12.
E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. (3) 78 (1999), no. 1, 77-115. crossref(new window)

13.
L. Gysin, The isoperimetric inequality for nonsimple closed curves, Proc. Amer. Math. Soc. 118 (1993), no. 1, 197-203. crossref(new window)

14.
G. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambradge Univ. Press, Cambradge/New York, 1951.

15.
R. Howard, The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2779-2787. crossref(new window)

16.
C. C. Hsiung, Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. of Math. (2) 73 (1961), 213-220. crossref(new window)

17.
W. Y. Hsiung, An elementary proof of the isoperimetric problem, Chinese Ann. Math. Ser. A 23 (2002), no. 1, 7-12.

18.
H. Ku, M. Ku, and X. Zhang, Isoperimetric inequalities on surfaces of constant curvature, Canad. J. Math. 49 (1997), no. 6, 1162-1187. crossref(new window)

19.
M. Li and J. Zhou, An upper limit for the isoperimetric decit of convex set in a plane of constant curvature, Sci. in China Mathematics 53 (2010), no. 8, 1941-1946. crossref(new window)

20.
E. Lutwak, D. Yang, and G. Zhang, Sharp affine Lp Sobolev inequalities, J. Differential Geom. 62 (2002), no. 1, 17-38.

21.
R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182-1238. crossref(new window)

22.
R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1, 1-29. crossref(new window)

23.
A. Pleijel, On konvexa kurvor, Nordisk Math. Tidskr. 3 (1955), 57-64.

24.
G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.

25.
D. Ren, Topics in Integral Geometry, World Scientific, Sigapore, 1994.

26.
L. A. Santalo, Integral Geometry and Geometric Probability, Reading, MA: Addison- Wesley, 1976.

27.
A. Stone, On the isoperimetric inequality on a minimal surface, Calc. Var. Partial Differential Equations 17 (2003), no. 4, 369-391. crossref(new window)

28.
D. Tang, Discrete Wirtinger and isoperimetric type inequalities, Bull. Austral. Math. Soc. 43 (1991), no. 3, 467-474. crossref(new window)

29.
E. Teufel, A generalization of the isoperimetric inequality in the hyperbolic plane, Arch. Math. (Basel) 57 (1991), no. 5, 508-513. crossref(new window)

30.
E. Teufel, Isoperimetric inequalities for closed curves in spaces of constant curvature, Results Math. 22 (1992), no. 1-2, 622-630. crossref(new window)

31.
S. Wei and M. Zhu, Sharp isoperimetric inequalities and sphere theorems, Pacific J. Math. 220 (2005), no. 1, 183-195. crossref(new window)

32.
J. L. Weiner, A generalization of the isoperimetric inequality on the 2-sphere, Indiana Univ. Math. J. 24 (1974/75), 243-248. crossref(new window)

33.
J. L. Weiner, Isoperimetric inequalities for immersed closed spherical curves, Proc. Amer. Math. Soc. 120 (1994), no. 2, 501-506. crossref(new window)

34.
S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. Ecole Norm. Sup. (4) 8 (1975), no. 4, 487-507.

35.
G. Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), no. 1, 183-202.

36.
G. Zhang and J. Zhou, Containment measures in integral geometry, Integral geometry and convexity, 153-168, World Sci. Publ., Hackensack, NJ, 2006.

37.
X.-M. Zhang, Bonnesen-style inequalities and pseudo-perimeters for polygons, J. Geom. 60 (1997), no. 1-2, 188-201. crossref(new window)

38.
X.-M. Zhang, Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc. 126 (1998), no. 2, 461-470. crossref(new window)

39.
J. Zhou, A kinematic formula and analogues of Hadwiger's theorem in space, Geometric analysis (Philadelphia, PA, 1991), 159-167, Contemp. Math., 140, Amer. Math. Soc., Providence, RI, 1992.

40.
J. Zhou, The sufficient condition for a convex body to enclose another in TEX>$R^{4}$, Proc. Amer. Math. Soc. 121 (1994), no. 3, 907-913.

41.
J. Zhou, Kinematic formulas for mean curvature powers of hypersurfaces and Had- wiger's theorem in $R^{2n}$, Trans. Amer. Math. Soc. 345 (1994), no. 1, 243-262. crossref(new window)

42.
J. Zhou, When can one domain enclose another in $R^{3}$?, J. Austral. Math. Soc. Ser. A 59 (1995), no. 2, 266-272. crossref(new window)

43.
J. Zhou, Sufficient conditions for one domain to contain another in a space of constant curvature, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2797-2803. crossref(new window)

44.
J. Zhou, On Willmore's inequality for submanifolds, Canad. Math. Bull. 50 (2007), no. 3, 474-480. crossref(new window)

45.
J. Zhou, On the Willmore deficit of convex surfaces, Tomography, impedance imaging, and integral geometry (South Hadley, MA, 1993), 279-287, Lectures in Appl. Math., 30, Amer. Math. Soc., Providence, RI, 1994.

46.
J. Zhou, The Willmore functional and the containment problem in $R^{4}$, Sci. China Ser. A 50 (2007), no. 3, 325-333. crossref(new window)

47.
J. Zhou, Bonnesen-type inequalities on the plane, Acta Math. Sinica (Chin. Ser.) 50 (2007), no. 6, 1397-1402.

48.
J. Zhou and F. Chen, The Bonnesen-type inequalities in a plane of constant curvature, J. Korean Math. Soc. 44 (2007), no. 6, 1363-1372. crossref(new window)