JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn
Lai, Baishun; Luo, Qing; Zhou, Shuqing;
  PDF(new window)
 Abstract
We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q
 Keywords
semilinear elliptic equation;positive solutions;asymptotic behavior;singular solutions;
 Language
English
 Cited by
 References
1.
S. Bae, Positive entire solutions of semilinear elliptic equations with quadratically vanishing coefficient, J. Differential Equations 237 (2007), no. 1, 159-197. crossref(new window)

2.
S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $R^{n}$, J. Differential Equations 194 (2003), no. 2, 460-499. crossref(new window)

3.
S. Bae, T.-K. Chang, and D.-H. Pank, Infinite multiplicity of positive entire solutions for a semilinear elliptic equation, J. Differential Equations 181 (2002), no. 2, 367-387. crossref(new window)

4.
S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semi- linear elliptic equation on $R^{n}$, Math. Ann. 320 (2001), no. 1, 191-210. crossref(new window)

5.
R. Bamon, I. Flores, and M. del Pino, Ground states of semilinear elliptic equations: a geometric approach, Ann. Inst. H. Poincare Anal. Non Lineaire 17 (2000), no. 5, 551-581. crossref(new window)

6.
G. Bernard, An inhomogeneous semilinear equation in entire space, J. Differential Equations 125 (1996), no. 1, 184-214. crossref(new window)

7.
Y.-B. Deng, Y. Li, and Y. Liu, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal. 54 (2003), no. 2, 291-318. crossref(new window)

8.
Y.-B. Deng, Y. Li, and F. Yang, On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem, J. Differential Equations 228 (2006), no. 2, 507-529. crossref(new window)

9.
C.-F. Gui, Positive entire solutions of the equation $\Delta$u + f(x, u) = 0, J. Differential Equations 99 (1992), no. 2, 245-280. crossref(new window)

10.
C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta$u + K(x)$u^{p}$ = 0 and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 2, 225-237. crossref(new window)

11.
C.-F. Gui, W.-M. Ni, and X.-F. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $R^{n}$, Comm. Pure Appl. Math. 45 (1992), no. 9, 1153-1181. crossref(new window)

12.
C.-F. Gui, W.-M. Ni, and X.-F. Wang, Further study on a nonlinear heat equation, J. Differential Equations 169 (2001), no. 2, 588-613. crossref(new window)

13.
K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503-505. crossref(new window)

14.
D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972), 241-269.

15.
T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc. 333 (1992), no. 1, 365-378. crossref(new window)

16.
Y. Li, Remarks on a semilinear elliptic equation on $R^{n}$, J. Differential Equations 74 (1988), no. 1, 34-49. crossref(new window)

17.
Y. Li, Asymptotic behavior of positive solutions of equation $\Delta$u+K(x)$u^{p}$ = 0 in $R^{n}$, J. Differential Equations 95 (1992), no. 2, 304-330. crossref(new window)

18.
Y. Li and W.-M. Ni, On conformal scalar curvature equations in $R^{n}$, Duke Math. J. 57 (1988), no. 3, 895-924. crossref(new window)

19.
Y. Liu, Y. Li, and Y.-B. Deng, Separation property of solutions for a semilinear elliptic equation, J. Differential Equations 163 (2000), no. 2, 381-406. crossref(new window)

20.
W.-M. Ni, On the elliptic equation $\Delta$u+K(x)$u^{(n+2)/(n-2)}$ = 0, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493-529. crossref(new window)

21.
W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math. 5 (1988), no. 1, 1-32. crossref(new window)

22.
J. Serrin and H. Zou, Classification of positive solutions of quasilinear elliptic equations, Topol. Methods Nonlinear Anal. 3 (1994), no. 1, 1-25.

23.
X.-F. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc. 337 (1993), no. 2, 549-590. crossref(new window)

24.
F. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), no. 1-2, 29-40. crossref(new window)

25.
E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta$u + K(lxl)$u^{p}$ = 0 in $R^{n}$, Arch. Rational Mech. Anal. 124 (1993), no. 3, 239-259. crossref(new window)