JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CRITICAL EXPONENTS FOR A DOUBLY DEGENERATE PARABOLIC SYSTEM COUPLED VIA NONLINEAR BOUNDARY FLUX
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CRITICAL EXPONENTS FOR A DOUBLY DEGENERATE PARABOLIC SYSTEM COUPLED VIA NONLINEAR BOUNDARY FLUX
Mi, Yongsheng; Mu, Chunlai; Chen, Botao;
  PDF(new window)
 Abstract
The paper deals with the degenerate parabolic system with nonlinear boundary flux. By constructing the self-similar supersolution and subsolution, we obtain the critical global existence curve. The critical Fujita curve is conjectured with the aid of some new results.
 Keywords
critical global existence curve;degenerate parabolic systems;critical Fujita curve;nonlinear boundary flux;blow-up;
 Language
English
 Cited by
1.
A nonlinear diffusion system coupled via nonlinear boundary flux, Journal of Mathematical Analysis and Applications, 2011, 376, 2, 613  crossref(new windwow)
2.
GLOBAL EXISTENCE AND BLOW-UP FOR A DOUBLY DEGENERATE PARABOLIC EQUATION SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS, Glasgow Mathematical Journal, 2012, 54, 02, 309  crossref(new windwow)
 References
1.
G. Astrita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.

2.
Z. J. Cui, Critical curves of the non-Newtonian polytropic filtration equations coupled with nonlinear boundary conditions, Nonlinear Anal. 68 (2008), no. 10, 3201-3208. crossref(new window)

3.
K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85-126. crossref(new window)

4.
E. Dibenedetto, Degenerate Parabolic Equations, Springer-Verlag, Berlin, New York, 1993.

5.
R. Ferreira, A. de Pablo, F. Quiros, and J. D. Rossi, The blow-up profile for a fast diffusion equation with a nonlinear boundary condition, Rocky Mountain J. Math. 33 (2003), no. 1, 123-146. crossref(new window)

6.
H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ${\Delta}u+u^{1+{\alpha}}$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124.

7.
V. A. Galaktionov and H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal. 34 (1998), no. 7, 1005-1027. crossref(new window)

8.
V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math. 94 (1996), 125-146. crossref(new window)

9.
A. V. Ivanov, Holder estimates for quasilinear doubly degenerate parabolic equations, J. Soviet Math. 56 (1991), no. 2, 2320-2347. crossref(new window)

10.
Z. X. Jiang and S. N. Zheng, Doubly degenerate paralolic equation with nonlinear inner sources or boundary flux, Doctor Thesis, Dalian University of Tcchnology, In China, 2009

11.
C. H. Jin and J. X. Yin, Critical exponents and non-extinction for a fast diffusive polytropic filtration equation with nonlinear boundary sources, Nonlinear Anal. 67 (2007), no. 7, 2217-2223. crossref(new window)

12.
A. S. Kalashnikov, A nonlinear equation arising in the theory of nonlinear filtration, Trudy Sem. Petrovsk. No. 4 (1978), 137-146.

13.
A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Uspekhi Mat. Nauk 42 (1987), no. 2(254), 135-176, 287.

14.
K. A. Lee, A. Petrosyan, and J. L. Vazquez, Large-time geometric properties of solutions of the evolution p-Laplacian equation, J. Differential Equations 229 (2006), no. 2, 389-411. crossref(new window)

15.
H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), no. 2, 262-288. crossref(new window)

16.
Z. P. Li and C. L. Mu, Critical exponents for a fast diffusive polytropic filtration equation with nonlinear boundary flux, J. Math. Anal. Appl. 346 (2008), no. 1, 55-64. crossref(new window)

17.
Z. P. Li and C. L. Mu, Critical curves for fast diffusive non-Newtonian equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 340 (2008), no. 2, 876-883. crossref(new window)

18.
Z. P. Li, C.L. Mu, and Z. J. Cui, Critical curves for a fast diffusive polytropic filtration system coupled via nonlinear boundary flux, Z. Angew. Math. Phys. 60 (2009), no. 2, 284-298. crossref(new window)

19.
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

20.
Z. G. Lin, Blowup behaviors for diffusion system coupled through nonlinear boundary conditions in a half space, Sci. China Ser. A 47 (2004), no. 1, 72-82. crossref(new window)

21.
Y. S. Mi and C. L. Mu, Critical exponents for a nonlinear degenerate parabolic system coupled via nonlinear boundary flux, submitted.

22.
M. Pedersen and Z. G. Lin, Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition, Appl. Math. Lett. 14 (2001), no. 2, 171-176. crossref(new window)

23.
F. Quiros and J. D. Rossi, Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions, Indiana Univ. Math. J. 50 (2001), no. 1, 629-654. crossref(new window)

24.
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995.

25.
P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998), no. 6, 1301-1334. crossref(new window)

26.
J. L. Vazquez, The Porous Medium Equations: Mathematical Theory, Oxford University Press, Oxford, 2007.

27.
M. X. Wang, The blow-up rates for systems of heat equations with nonlinear boundary conditions, Sci. China Ser. A 46 (2003), no. 2, 169-175. crossref(new window)

28.
S. Wang, C. H. Xie, and M. X. Wang, Note on critical exponents for a system of heat equations coupled in the boundary conditions, J. Math. Anal. Appl. 218 (1998), no. 1, 313-324. crossref(new window)

29.
S. Wang, C. H. Xie, and M. X. Wang, The blow-up rate for a system of heat equations completely coupled in the boundary conditions, Nonlinear Anal. 35 (1999), no. 3, Ser. A: Theory Methods, 389-398. crossref(new window)

30.
Z. J. Wang, J. X. Yin, and C. P. Wang, Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition, Appl. Math. Lett. 20 (2007), no. 2, 142-147. crossref(new window)

31.
Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, World Scientific Publishing Co. Inc. River Edge, NJ, 2001.

32.
Z. Y. Xiang, Q. Chen, and C. L. Mu, Critical curves for degenerate parabolic equations coupled via non-linear boundary flux, Appl. Math. Comput. 189 (2007), no. 1, 549-559. crossref(new window)

33.
S. N. Zheng, X. F. Song, and Z. X. Jiang, Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (2004), no. 1, 308-324. crossref(new window)

34.
J. Zhou and C. L. Mu, The critical curve for a non-Newtonian polytropic filtration system coupled via nonlinear boundary flux, Nonlinear Anal. 68 (2008), no. 1, 1-11. crossref(new window)

35.
J. Zhou and C. L. Mu, On the critical Fujita exponent for a degenerate parabolic system coupled via nonlinear boundary flux, Proc. Edinb. Math. Soc. (2) 51 (2008), no. 3, 785-805. crossref(new window)