JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A VERY SIMPLE CHARACTERIZATION OF GROMOV HYPERBOLICITY FOR A SPECIAL KIND OF DENJOY DOMAINS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A VERY SIMPLE CHARACTERIZATION OF GROMOV HYPERBOLICITY FOR A SPECIAL KIND OF DENJOY DOMAINS
Portilla, Ana; Rodriguez, Jose M.; Touris, Eva;
  PDF(new window)
 Abstract
In this paper we provide characterizations for the Gromov hyperbolicity of some particular Denjoy domains and besides some sufficient conditions to guarantee or discard the hyperbolicity of some others. The conditions obtained involve just the lengths of some special simple closed geodesics in the domain. These results, on the one hand, show the extraordinary complexity of determining the hyperbolicity of a domain and, on the other hand, allow us to construct easily a large variety of both hyperbolic and non-hyperbolic domains.
 Keywords
Denjoy domain;Gromov hyperbolicity;Poincar metric;train;
 Language
English
 Cited by
 References
1.
H. Aikawa, Positive harmonic functions of finite order in a Denjoy type domain, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3873-3881. crossref(new window)

2.
V. Alvarez, D. Pestana, and J. M. Rodriguez, Isoperimetric inequalities in Riemann surfaces of infinite type, Rev. Mat. Iberoamericana 15 (1999), no. 2, 353-427.

3.
V. Alvarez, A. Portilla, J. M. Rodriguez, and E. Touris, Gromov hyperbolicity of Denjoy domains, Geom. Dedicata 121 (2006), 221-245.

4.
V. Alvarez, J. M. Rodriguez, and D. A. Yakubovich, Estimates for nonlinear harmonic “measures” on trees, Michigan Math. J. 49 (2001), no. 1, 47-64. crossref(new window)

5.
J. W. Anderson, Hyperbolic Geometry, Springer, London, 1999.

6.
Z. M. Balogh and S. M. Buckley, Geometric characterizations of Gromov hyperbolicity, Invent. Math. 153 (2003), no. 2, 261-301. crossref(new window)

7.
A. Basmajian, Constructing pairs of pants, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 1, 65-74. crossref(new window)

8.
A. Basmajian, Hyperbolic structures for surfaces of infinite type, Trans. Amer. Math. Soc. 336 (1993), no. 1, 421-444. crossref(new window)

9.
A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.

10.
L. Bers, An inequality for Riemann surfaces, Differential geometry and complex analysis, 87-93, Springer, Berlin, 1985.

11.
M. Bonk, J. Heinonen, and P. Koskela, Uniformizing Gromov hyperbolic spaces, Asterisque No. 270 (2001), viii+99 pp.

12.
A. Canton, J. L. Fernandez, D. Pestana, J. M. Rodriguez, On harmonic functions on trees, Potential Anal. 15 (2001), no. 3, 199-244. crossref(new window)

13.
M. Coornaert, T. Delzant, and A. Papadopoulos, Notes sur les groups hyperboliques de Gromov, I.R.M.A., Strasbourg, 1989.

14.
J. L. Fernandez and J. M. Rodriguez, Area growth and Green’s function of Riemann surfaces, Ark. Mat. 30 (1992), no. 1, 83-92. crossref(new window)

15.
J. Garnett and P. Jones, The corona theorem for Denjoy domains, Acta Math. 155 (1985), no. 1-2, 27-40. crossref(new window)

16.
E. Ghys and P. de la Harpe, Panorama, Sur les groupes hyperboliques d’apres Mikhael Gromov (Bern, 1988), 1-25, Progr. Math., 83, Birkhauser Boston, Boston, MA, 1990.

17.
M. J. Gonzalez, An estimate on the distortion of the logarithmic capacity, Proc. Amer. Math. Soc. 126 (1998), no. 5, 1429-1431. crossref(new window)

18.
M. Gromov, Hyperbolic groups, Essays in group theory, 75-263, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.

19.
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathematics, 152. Birkhauser Boston, Inc., Boston, MA, 1999.

20.
A. Haas, Dirichlet points, Garnett points, and infinite ends of hyperbolic surfaces. I, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 3-29.

21.
P. A. Hasto, Gromov hyperbolicity of the jG and jG metrics, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1137-1142. crossref(new window)

22.
P. A. Hasto, H. Linden, A. Portilla, J. M. Rodriguez, E. Touris, Gromov hyperbolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics, To appear in J. Math. Soc. Japan.

23.
P. A. Hasto, A. Portilla, J. M. Rodriguez, and E. Touris, Gromov hyperbolic equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains, Bull. Lond. Math. Soc. 42 (2010), 282-294. crossref(new window)

24.
P. A. Hasto, A. Portilla, J. M. Rodriguez, and E. Touris, Comparative Gromov hyperbolicity results for the hyperbolic and quasihyperbolic metrics, Complex Var. Elliptic Equ. 55 (2010), no. 1-3, 127-135. crossref(new window)

25.
P. A. Hasto, A. Portilla, J. M. Rodriguez, and E. Touris, Uniformly separated sets and Gromov hyperbolicity of domains with the quasihyperbolicity metric, To appear in Medit. J. Math.

26.
P. A. Hasto, A. Portilla, J. M. Rodriguez, and E. Touris, Gromov hyperbolicity of Denjoy domains through fundamental domains, Submitted.

27.
I. Holopainen and P. M. Soardi, p-harmonic functions on graphs and manifolds, Manuscripta Math. 94 (1997), no. 1, 95-110. crossref(new window)

28.
M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985), no. 3, 391-413. crossref(new window)

29.
M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan 38 (1986), no. 2, 227-238. crossref(new window)

30.
M. Kanai, Analytic inequalities, and rough isometries between noncompact Riemannian manifolds, Curvature and topology of Riemannian manifolds (Katata, 1985), 122-137, Lecture Notes in Math., 1201, Springer, Berlin, 1986. crossref(new window)

31.
A. Karlsson and G. A. Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. (2) 48 (2002), no. 1-2, 73-89.

32.
H. Linden, Gromov hyperbolicity of certain conformal invariant metrics, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 1, 279-288.

33.
F. Paulin, On the critical exponent of a discrete group of hyperbolic isometries, Differential Geom. Appl. 7 (1997), no. 3, 231-236. crossref(new window)

34.
A. Portilla, J. M. Rodriguez, and E. Touris, Gromov hyperbolicity through decomposition of metrics spaces. II, J. Geom. Anal. 14 (2004), no. 1, 123-149. crossref(new window)

35.
A. Portilla, J. M. Rodriguez, and E. Touris, The topology of balls and Gromov hyperbolicity of Riemann surfaces, Differential Geom. Appl. 21 (2004), no. 3, 317-335. crossref(new window)

36.
A. Portilla, J. M. Rodriguez, and E. Touris, The role of funnels and punctures in the Gromov hyperbolicity of Riemann surfaces, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 2, 399-425. crossref(new window)

37.
A. Portilla, J. M. Rodriguez, and E. Touris, Stability of Gromov hyperbolicity, J. Adv. Math. Stud. 2 (2009), no. 2, 77-96.

38.
A. Portilla, J. M. Rodriguez, and E. Touris, A real variable characterization of Gromov hyperbolicity of flute surfaces, To appear in Osaka J. Math.

39.
A. Portilla and E. Touris, A characterization of Gromov hyperbolicity of surfaces with variable negative curvature, Publ. Mat. 53 (2009), no. 1, 83-110. crossref(new window)

40.
J. M. Rodriguez, Isoperimetric inequalities and Dirichlet functions of Riemann surfaces, Publ. Mat. 38 (1994), no. 1, 243-253. crossref(new window)

41.
J. M. Rodriguez, Two remarks on Riemann surfaces, Publ. Mat. 38 (1994), no. 2, 463-477. crossref(new window)

42.
J. M. Rodriguez and J. M. Sigarreta, Location of geodesics and isoperimetric inequalities in Denjoy domains, Submitted.

43.
J. M. Rodriguez and E. Touris, Gromov hyperbolicity through decomposition of metric spaces, Acta Math. Hungar. 103 (2004), no. 1-2, 107-138. crossref(new window)

44.
J. M. Rodriguez and E. Touris, A new characterization of Gromov hyperbolicity for negatively curved surfaces, Publ. Mat. 50 (2006), no. 2, 249-278. crossref(new window)

45.
J. M. Rodriguez and E. Touris, Gromov hyperbolicity of Riemann surfaces, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 2, 209-228.

46.
P. M. Soardi, Rough isometries and Dirichlet finite harmonic functions on graphs, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1239-1248. crossref(new window)

47.
E. Touris, Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces, To appear in J. Math. Anal. Appl..