JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INDUCED HOPF CORING STRUCTURES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INDUCED HOPF CORING STRUCTURES
Saramago, Rui Miguel;
  PDF(new window)
 Abstract
Hopf corings are dened in this work as coring objects in the category of algebras over a commutative ring R. Using the Dieudonn equivalences from [7] and [19], one can associate coring structures built from the Hopf algebra , p a prime, with Hopf ring structures with same underlying connected Hopf algebra. We have that coring structures classify thus Hopf ring structures for a given Hopf algebra. These methods are applied to dene new ring products in the Hopf algebras underlying known Hopf rings that come from connective Morava -theory.
 Keywords
Hopf algebras;Hopf rings;Dieudonne modules;homotopy theory;
 Language
English
 Cited by
 References
1.
J. M. Boardman, R. L. Kramer, and W. S. Wilson, The periodic Hopf ring of connective Morava K-theory, Forum Math. 11 (1999), no. 6, 761-767. crossref(new window)

2.
A. K. Bousfield, On ${\lambda}$-rings and the K-theory of infinite loop spaces, K-Theory 10 (1996), no. 1, 1-30. crossref(new window)

3.
A. K. Bousfield, On p-adic ${\lambda}$-rings and the K-theory of H-spaces, Math. Z. 223 (1996), no. 3, 483-519. crossref(new window)

4.
V. Buchstaber and A. Lazarev, Dieudonne modules and p-divisible groups associated with Morava K-theory of Eilenberg-Mac Lane spaces, Algebr. Geom. Topol. 7 (2007), 529-564. crossref(new window)

5.
M. Demazure, Lectures on p-Divisible Groups, Lecture Notes in Mathematics, Vol. 302. Springer-Verlag, Berlin-New York, 1972.

6.
M. Demazure and P. Gabriel, Groupes Algebriques, North-Holland, Amsterdam, 1970.

7.
P. G. Goerss, Hopf rings, Dieudonne modules, and $E_*{\Omega}^2S^3$, Homotopy invariant algebraic structures (Baltimore, MD, 1998), 115-174, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999.

8.
P. Goerss, J. Lannes, and F. Morel, Hopf algebras, Witt vectors, and Brown-Gitler spectra, Algebraic topology (Oaxtepec, 1991), 111-128, Contemp. Math., 146, Amer. Math. Soc., Providence, RI, 1993.

9.
M. J. Hopkins, D. C. Ravenel, and W. S. Wilson, Morava Hopf algebras and spaces K(n) equivalent to fiite Postnikov systems, Stable and unstable homotopy (Toronto, ON, 1996), 137-163, Fields Inst. Commun., 19, Amer. Math. Soc., Providence, RI, 1998.

10.
J. R. Hunton and P. R. Turner, Coalgebraic algebra, J. Pure Appl. Algebra 129 (1998), no. 3, 297-313. crossref(new window)

11.
I. Kaplansky, Bialgebras, Chicago, 1975.

12.
R. L. Kramer, The periodic Hopf ring of connective Morava K-theory, Ph. D. Thesis, The Johns Hopkins University, 1990.

13.
J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. crossref(new window)

14.
D. C. Ravenel, Dieudon'e modules for abelian Hopf algebras, Conference on homotopy theory (Evanston, Ill., 1974), 177-183, Notas Mat. Simpos., 1, Soc. Mat. Mexicana, Mexico, 1975.

15.
D. C. Ravenel and W. S. Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra 9 (1976/77), no. 3, 241-280. crossref(new window)

16.
D. C. Ravenel and W. S. Wilson, The Morava K-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), no. 4, 691-748. crossref(new window)

17.
H. Sadofsky and W. S. Wilson, Commutative Morava homology Hopf algebras, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997), 367-373, Contemp. Math., 220, Amer. Math. Soc., Providence, RI, 1998.

18.
R. M. Saramago, Dieudonne rings associated with $K(n)_*k(n)_*$, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2699-2709. crossref(new window)

19.
R. M. Saramago, Dieudonne module structures for ungraded and periodically graded Hopf rings, Algebras and Representation Theory 13 (2010), no. 5, 521-541. crossref(new window)

20.
R. M. Saramago, Connected Hopf Corings and Their Dieudonne Counterparts, preprint.

21.
C. Schoeller, Etude de la categorie des algebres de Hopf commutatives connexes sur un corps, Manuscripta Math. 3 (1970), 133-155. crossref(new window)

22.
W. S. Wilson, The Hopf ring for Morava K-theory, Publ. Res. Inst. Math. Sci. 20 (1984), no. 5, 1025-1036. crossref(new window)